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1 Introduction

Innovations in production technology can have wide-ranging consequences for economic

outcomes. Within a firm, technology determines the efficient level of production and the

availability of scale economies. Within a market, it shapes the number of firms that can

profitably coexist and the extent to which firms can exercise market power. This paper

considers a major technological advance in the portland cement industry—the modern pre-

calciner kiln—and analyzes its effects on economic outcomes as it came to dominate pro-

duction in the late twentieth and early twenty-first centuries. We document that the number

of plants nearly halved over a 46-year window spanning 1974-2019, even as consumption,

production, and industry capacity increased. We apply structural modeling techniques to

understand how this transformation has affected market concentration, markups, prices,

and economies of scale throughout the United States.

Motivating our effort is a growing literature on what sometimes is referred to as The
Rise of Market Power. There are two main strands. First, De Loecker et al. (2020) combine

accounting data with production function estimates for a large number of firms in the U.S.

and determine that a significant increase in markups has occurred in recent decades.1 Sec-

ond, a string of articles document rising concentration across a number of industries in the

U.S., at least at the national level (e.g, Peltzman, 2014; Barkai, 2016; Grullon et al., 2019;

Ganapati, 2021; Autor et al., 2020; Kwon et al., 2024).2 We complement this literature by

providing an industry study that traces the evolution of market power in a specific context

and explores the mechanisms that give rise to these changes.

The results of our analysis indicate significant increases in local market concentration,

but markups increase only modestly, and real prices do not rise. At the local level, there

is a tight relationship between concentration and markup changes, but not between con-

centration and price changes. A decomposition reveals that precalciner adoption and plant

closures largely account for these empirical patterns. In our model, these factors contribute

to rising markups by reducing marginal cost and lessening competition. For the same rea-

sons, they exert opposing effects on price. As scale-increasing technologies can induce exit

in the long run, the plant closures themselves may be due to precalciner technology. We

evaluate plant-level economies of scale and find that the adoption of precalciner technology

creates an impetus for significant output expansion for plants that adopt it.

Thus, our results support a nuanced view of The Rise of Market Power in the cement

industry. Technological change, rather than weak antitrust enforcement or a lax regulatory

1Subsequent research probes the production function methodology used to recover markups (e.g. Bond et
al., 2021; Doraszelski and Jaumandreu, 2021; Raval, 2023; De Ridder et al., 2024; Foster et al., 2022).

2Concentration may be decreasing in markets that are defined narrowly, either in geographic space (Rossi-
Hansberg et al., 2020) or product space (Benkard et al., 2023).
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environment, is the primary explanation for changes in concentration and markups. Fur-

thermore, buyers of cement do not appear to have been harmed on average. Two literature

reviews that cite our research indicate that, looking across industries, nuances similar to

the ones we identify are the norm (Shapiro and Yurukoglu, 2024; Miller, 2025).

Methodologically, we develop an oligopoly model of supply and demand to recover local

market outcomes from aggregated data on prices and quantities. We assume buyers conduct

second-score auctions in which suppliers are evaluated based on their bid and a number of

other attributes, the buyer with the highest score wins the auction, and price is pinned

down by the score of the second-best supplier (e.g., Che, 1993; Laffont and Tirole, 1987;

Asker and Cantillon, 2008, 2010). The model is strategically equivalent to a multi-attribute

English auction, which makes it appropriate for settings in which buyers play prospective

suppliers off against each other to obtain favorable terms. We incorporate upward-sloping

marginal cost functions and prove that a Nash equilibrium exists in which suppliers max-

imize profit by bidding at marginal cost. An important property of the model is that, if

buyers have heterogeneous preferences, markups and prices are specific to buyer-supplier

pairs, even though equilibrium bids are determined by plant-level marginal costs.

We specify the model to incorporate spatial differentiation among plants, allowing it to

generate the rich variation we observe in outcomes as, over time, plants in different loca-

tions enter and exit, and demand shifts across geographic locations. We assume transporta-

tion costs depend on the distance between each plant and small geographic areas—in prac-

tice, counties. This, in turn, allows the closeness of competition between plants to depend

on their relative proximity to buyers, as the prices generated from the second-score auction

depend on how buyers rank plants, inclusive of transportation costs. Under a parametric

assumption proposed in Miller (2014) and Allen et al. (2019), we derive closed-form solu-

tions for the market share, average markup, and average price of each plant in each county.

These analytical solutions distinguish our model from the Bertrand models used previously

for spatial differentiation (e.g., Thomadsen, 2005; Miller and Osborne, 2014b; Elickson et

al., 2020).3 They vastly speed up the computation of equilibrium because the nonlinear

search is over plant-level bids rather than plant-county-level prices and quantities.

We estimate the model using nonlinear least squares, exploiting comprehensive micro-

data on cement plants that includes their kiln technology and productive capacity. The

objective function is based on squared differences between (aggregated) equilibrium pre-

dictions and analogous endogenous data. As implementation requires that we compute

equilibrium for each candidate parameter vector, the computational savings that we obtain

from the second-score framework are crucial. An identifying assumption is that plant-level

3Our framework is more flexible than assuming all trade occurs within local markets and there is no differ-
entiation among plants in the same market, an assumption that has been used productively in research on the
cement industry that addresses different questions (e.g. Ryan, 2012; Fowlie et al., 2016).
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heterogeneity can be accounted for using observables, which we consider reasonable for

our setting, given the plant-level micro-data. We validate our estimates by comparing the

transportation costs and demand elasticities that we obtain to external evidence. With the

structural parameters in hand, we bound kiln-level fixed costs following Eizenberg (2014),

which allows us to obtain average cost functions and to assess scale economies.

The modeling results that we obtain are partially consistent with The Rise of Market
Power in the cement industry, as local market concentration and markups increase over the

sample period. Looking across the counties in the contiguous U.S., we find that the quantity-

weighted median Herfindahl Hirschman Index (HHI) increased from 1876 to 2727, equiva-

lent to a reduction in the number of symmetric firms from 5.3 to 3.7. However, the increase

in the quantity-weighed median markup is more modest, at 5.3%, much less than the es-

timates of De Loecker et al. (2020). Perturbations to the model, such as small increases

in buyers’ bargaining power or price sensitivity, can eliminate the rise in markups. Buyer

surplus increased by three percentage points from 1974 to 2019, while the variable profit

of cement firms decreased by seven percentage points; total welfare did not change.

In the model, equilibrium outcomes are affected by many factors, including plant clo-

sures, technology adoption, entry, mergers, factor prices, and demand conditions. We use

counterfactual simulations to understand how much each of these factors contributes to

changes in concentration, markups, and prices. The results of this decomposition exercise

indicate that plant closures largely explain the increase in concentration, though mergers

and entry also have meaningful, offsetting effects. Markups rise mainly due to plant clo-

sures and mergers, which lessen competition. Finally, a number of factors impact prices,

with plant closures and precalciner technology having large, opposing effects. An exam-

ination of the panel variation indicates that proximity to the Mississippi River System is

a moderating influence, as it connects a large number of buyers and suppliers, and helps

produce equilibrium outcomes that are less extreme and more stable over time.

Overall, these results are consistent with the main short run effect of precalciner tech-

nology being marginal cost reductions that are passed through to cement buyers in the

form of lower prices. To the extent that the adoption of precalciner technology contributes

to rising concentration and markups, it is through an effect on long run decisions, including

on plant closures. However, it may be reasonable to attribute the bulk of plant closures to

precalciner technology because they increase productive capacity significantly.

To explore this hypothesis in greater quantitative detail, we evaluate economies of scale

using the fixed cost bounds and an engineering estimate of capital costs. We find that the

scale elasticity increases over the sample period due to the shift toward precalciner technol-

ogy. Evaluated at fixed quantities, the median scale elasticity rises from 1.12 in 1974 to 2.38

in 2019, implying that the amount of additional output that can be generated by incurring
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a given increase in costs nearly doubles. We also compute the ratio of price to average cost

for plants with modern technology. Evaluated at 1974 quantities, it remains well below one

throughout the sample, implying output expansion is necessary for precalciner adoption to

be profitable. The results are consistent with a central role of precalciner technology in

explaining the industry shakeout that has occurred over the previous four decades.

The insights we generate highlight the value of using an equilibrium model to interpret

economic data. The contours of some of our results can be found in raw data—for example,

the technological transition toward modern kiln technology, the plant closures, and the

price trends. Yet the implications for local-market concentration, markups, welfare, and

scale economies, both in how they change over time and their distribution across space,

are not readily apparent from data alone. Simpler measures, such as national-level HHI

statistics, do not inform the local market outcomes that matter for the buyers and sellers

of cement. A production approach to markup estimation using firm-level accounting data

(e.g., De Loecker et al., 2020) does not inform, for example, whether rising markups are

due to higher prices or lower costs, which have meaningfully different interpretations.

The articles closest to ours use structural models to examine specific industries over

long time horizons. Collard-Wexler and De Loecker (2015) examine the steel industry

over 1963-2002, when the advent of the minimill reduced fixed costs, resulting in entry,

lowered markups, and the exit of some vertically-integrated plants. Ganapati (2025) deter-

mines that investments by wholesalers over 1992-2012 in information technology increased

scale economies and improved service quality; markups increased, but consumers benefited

nonetheless. Grieco et al. (2024) study automobile manufacturing and find that markups

have decreased over time due to competitive pressures, despite significant improvements in

marginal cost and product quality. Brand (2021), Döpper et al. (2024), and Atalay et al.

(2025) examine consumer packaged goods and determine that markups have increased due

to marginal cost reductions that are not passed through to consumers. Kusaka et al. (2022)

examine precalciner kilns in Japan and find that they reduced the labor share. Each of these

articles highlight the role of technology in shaping the long-term economics of industries.

Together, they point to heterogeneity in technological change and its impacts.

Our research also relates to a large number of empirical articles that explore the impli-

cations of fixed costs for market outcomes. Among the contributions are Bresnahan and

Reiss (1991) on small businesses, Berry (1992), Ciliberto and Tamer (2009), Ciliberto et

al. (2021), and Li et al. (2022) on airlines, Berry and Waldfogel (1999) and Berry et al.

(2016) on radio broadcasting, Seim (2006) on video retail markets, Eizenberg (2014) on

personal computers, Wollmann (2018) on commercial vehicles, and Fan and Yang (2024)

on mergers and entry in beer markets. Among these, Eizenberg (2014) is the most simi-

lar to our research thematically, as it considers the impacts of innovation, specifically the
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development and introduction of Intel’s Pentium M computer chip.

We structure the paper as follows. We first describe the cement industry and our data

sources (Section 2). We then present the model and our empirical specification (Section 3).

Next, we develop the estimator and discuss our baseline estimates (Section 4). We examine

the evolution of market outcomes over the sample period (Section 5), and conclude with a

discussion of limitations and directions for future research (Section 6). In the appendices,

we provide additional detail on proofs (Appendix A), model extensions (Appendices B and

C), data and estimation (Appendix D), and the robustness of our results (Appendix E).

2 The Portland Cement Industry

2.1 Background Facts

Portland cement is a finely ground dust that forms concrete when mixed with water and

coarse aggregates such as sand and stone. Production involves feeding limestone and other

raw materials into large, capital-intensive rotary kilns; the raw materials enter at one end

of the kiln and undergo chemical reactions as they approach the burning zone on the other

end. The output of the kilns—clinker—is cooled, mixed with a small amount of gypsum,

and ground to form cement. Variable costs include raw materials, fuel costs, electricity

costs, labor, and kiln repair and maintenance (EPA (2009)). Plants run at full capacity

except during an annual maintenance period.

Most cement is sold under short-term contracts with construction firms and ready-mix

concrete plants that specify a mill price (or a “free-on-board” price) and can include buyer-

specific discounts. Some cement firms operate one or more ready-mix concrete plants

and sell cement and concrete to construction firms through these plants. Although fewer

than 100 cement plants now operate in the US, there are thousands of ready-mix concrete

plants.4 Differentiation among cement plants is predominantly spatial, as cement is costly

to ship and must conform to quality standards published by the American Society for Testing

and Materials (ASTM). Trucks, trains, and river barges can transport cement; buyers typi-

cally pay the costs. Cement plants tend to locate outside cities, along interstate highways,

and near the Mississippi River System.

Figure 1 plots total consumption and production. Both are pro-cyclical because cement

is used in construction. Consumption tends to outstrip production when macroeconomic

4Syverson and Hortaçsu (2007) analyzes vertical integration using data from the US Census. For 1997, the
final year of their sample, they report that 30.5% of cement plants, accounting for 55.4% of cement sales, were
at least partially vertically integrated. In the same year, 10.6% of ready-mix concrete plants, accounting for
14.2% of concrete sales, were vertically integrated. We interpret these numbers as indicating that most sales
even from vertically-integrated cement plants are made to independent ready-mix concrete plants. We discuss
the modeling implications of vertical integration in Appendix C.
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Figure 1: Consumption and Production, 1974-2019

Notes: Consumption and production are calculated based on data from the Minerals Yearbook.

conditions are favorable, due to domestic capacity constraints. Importers make up the

difference. Since freighter technology improved in the early 1980s, most imports have

arrived via transoceanic freighters. Some imports are trucked from Canada and Mexico.

Exports from the U.S. are negligible.

2.2 Kiln Technology

Modern precalciner kilns mitigate two inefficiencies of the “wet” and “long dry” kilns that

dominated production through most of the twentieth century. First, with older kiln technol-

ogy, heat escaped with the kiln’s exhaust gases. Second, the length of the older kilns—more

than 100 yards—amplified heat loss due to radiation. With modern kilns, raw materials

are preheated before they enter the kiln with exhaust gases and heat from a supplemen-

tary combustion chamber. Less time is needed in the kiln, so modern kilns are shorter in

length—typically only 25-40 yards—which reduces kiln radiation. They are 25-35% more

efficient than wet and long dry kilns and have greater productive capacity.

Figure 2 plots industry capacity (top panel) and the number of plants (bottom panel)

by technology type. We refer to wet and long dry kilns as “Old Technology” and precalciner

kilns as “Modern Technology.”5 Over 1974-2019, total industry capacity increased by 20%,

from 91 to 109 million metric tonnes, with old technology accounting for most of this

capacity at the beginning of the sample and modern technology accounting for most of this

capacity at the end. The number of plants fell by 45%, from 163 to 89. (This incorporates

13 new plants constructed during the sample period.) Reconciling the increase in capacity

5We also classify preheater kilns—which do not have the supplementary combustion chamber of precalciner
kilns—as modern technology. There are far fewer preheater kilns than precalciner kilns.
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Figure 2: Industry Capacity and the Number of Cement Plants, 1974-2019

Notes: Capacity is in millions of metric tonnes. We designate plants as using “Old Technology” if their least
efficient kiln is a wet kiln or a long dry kiln, and as using “Modern Technology” if their least efficient kiln uses
a precalciner or a preheater. Plants are excluded from the graphs if temporarily idled (e.g., due to maintenance
or low demand). Data are from the Plant Information Summary of the Portland Cement Association.

with the decrease in plants is the greater capacity of modern kiln technology.6

Firms must incur significant capital costs to upgrade their technology to a precalciner

kiln. The European cement association, CEMBUREAU, has placed the construction costs

of a modern plant with one million metric tonnes of annual capacity at C150-200 million,

or approximately three years of revenue, and states that cement ranks “among the most

capital intensive industries.”7 Previous research has sought to identify the conditions that

6Appendix Figure G.1 plots the average capacity per plant, which more than doubles over the sample period;
it also plots the number of kilns and the number of kilns per plant.

7Cement producers outsource kiln design to one of several industrial architecture firms with expertise
in cement. Installation is not technically demanding, and many industrial construction firms can manage
the steel plates, refractory linings, and duct work. Nonetheless, the total design and installation costs are
significant. The authors can provide the CEMBUREAU estimates upon request. Alternatively, see http:

//www.cembureau.be/about-cement/cement-industry-main-characteristics, which must be accessed us-
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Figure 3: National Average Price per Metric Tonne, 1974-2019

Notes: The national average price is obtained from the Minerals Yearbook and deflated to real 2010 dollars
using the CPI.

are conducive for precalciner technology (Macher et al., 2021). The results indicate that

adoption is more likely if fuel prices are high, there are few nearby competitors, and local

demand conditions are strong. The latter two effects are consistent with the benefits of

cost-reducing technology increasing with plant output (e.g., Gilbert, 2006).

Figure 3 plots the national average price over the sample period. The real price per

metric tonne is similar in 1974 and 2019: $102.16 and $104.83, respectively. The fluctua-

tions within the sample period coincide with changes in fossil fuel prices (especially in the

1970s) and macroeconomic conditions. We use modeling to explore in greater detail how

the adoption of precalincer kilns affected producers’ costs, markups, and profits, as well as

the prices negotiated by buyers and the market concentration that results.

2.3 Data Sources

The Minerals Yearbook and other USGS data

The USGS conducts an annual census of cement plants and summarizes the results in a

publication called the Minerals Yearbook. It contains data on free-on-board prices, produc-

tion, and consumption that are aggregated to the region level. The regions are not intended

to approximate economic markets, and their number varies over time to satisfy a “rule-of-

three” that they include at least three independent plants. There were 26 price regions in

1974, but only 20 in 2019. Production regions nearly always conform to price regions. The

consumption regions are smaller; there were 53 in 1974 and 55 in 2019.

The Minerals Yearbook also provides the proportion of cement that is produced by plants

with a wet kiln and data on transportation methods, including the proportion of cement

ing the Wayback Machine, and https://www.cembureau.eu/about-our-industry/key-facts-figures/.
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that is shipped using a river barge. Finally, we use the data it provides on the quantity and

value (inclusive of insurance, freight, and delivery charges) of imported cement.

The other USGS publication that we use is the California Letter, which tracks the destina-

tion of cement shipments that originate at plants in California. No other publicly available

data links cement producers’ locations to their customers’ locations. Depending on the year,

points of origination are aggregated to northern California, southern California, or Califor-

nia (in its entirety). Points of destination are aggregated to the same regions, Arizona and

Nevada. Unlike the Minerals Yearbook, data are available only for 1990-2010, and even

within that window, some data points are withheld to preserve confidentiality.8

The Plant Information Summary and other PCA data

The Portland Cement Association (PCA) conducts phone surveys of plants and reports the

results in a publication called the Plant Information Summary. Data are available annually

from 1973 to 2003 and also for 2004, 2006, 2008, 2010, 2013, 2016, and 2019. The

data provide an end-of-year snapshot on the location, owner, and primary fuel of each

cement plant in the U.S., as well as the age, capacity, and type (wet/dry/precalciner) of each

kiln. Capacity is reported as an annual number that incorporates a prescribed allotment

for maintenance downtime, and as a daily boilerplate rating that reflects the maximum

possible production. The Plant Information Summary also reports whether each kiln was

operated during the year. The other PCA publication that we use is the U.S. and Canadian
Portland Cement Labor-Energy Input Survey, which is published intermittently and contains

information on the energy requirements of cement production and the energy content of

fossil fuels burned in kilns. We use those data along with supplementary data on fossil fuel

prices to construct engineering estimates of plant-specific fuel costs, as explained in further

detail in Appendix D.1.

Other Data Sources

We use county-level data on construction employment from the County Business Patterns of

the Census Bureau (NAICS Code 23 and SIC Code 15) in order to help model the location

of demand for cement. We obtain the data for 1974-1985 from the University of Michigan

Data Warehouse and the data for 1986-2019 from the Census Bureau website. We use

data on fossil fuel prices from the State Energy Database System (SEDS) of the Energy

Information Administration (EIA) to help construct the engineering estimates of fuel costs.

8Using NCA, SCA, CA, AZ, and NV to refer to northern California, southern California, California, Arizona,
and Nevada, respectively, we observe: CA to NCA over 1990-2010, NCA to NCA over 1990-1999, SCA to NCA
over 1990-1999, CA to SCA over 2000-2010, SCA to SCA over 1990-1999, CA to NV over 2000-2010, SCA to
NV over 1990-1999, CA to AZ over 1990-2010, and SCA to AZ over 1990-1999.
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Finally, we obtain the latitude and longitude of the cement plants and the centroid of every

county using Google Maps, and the latitude and longitude of the mile markers along the

Mississippi River System from the Army Corps of Engineers. We calculate the straight-line

distances between plants, county centroids, and the Mississippi River System.

3 Empirical Model

We use a private value second-score auction to represent the decentralized negotiation pro-

cess through which buyers play cement producers off against each other to obtain more

favorable terms of trade. In the model, buyers choose the supplier with the best-scoring

bid, and the second-best bid determines the price. The model is strategically equivalent

to a descending multi-attribute English auction, which makes it appropriate for decentral-

ized negotiations (e.g., as used in Allen et al., 2013, 2019; Miller, 2014; Aryal et al., 2021;

Slattery, 2024; Beckert et al., 2024). It extends naturally to a setting in which price is de-

termined by ex post Nash bargaining between the buyer and the winning bidder (Appendix

B).

3.1 The Second-Score Auction

Let there be a set J of cement plants indexed by j that supply cement to a continuum of

buyers indexed by i. The plants belong to a set of firms F indexed by f , each of which may

own one or more plants, with the set owned by firm f denoted by J f . The total mass of

buyers is given by the market size, M .

The gross utility—utility not accounting for price—that buyer i receives from plant j is

uij = uij + eij (1)

where uij captures buyer and plant characteristics that are observable to the econometri-

cian and eij is an unobservable preference shock. We assume that the characteristics are

deterministic and constitute common knowledge among all agents. The preference shocks

are independently and identically distributed with a continuous distribution function He.

Our first assumption is about the information agents have about these shocks.

Assumption 1. (Information) Given the preference shocks {eij}j∈J ∀i,

1. Each buyer i has perfect information about the value of {eij}j∈J ,

2. Each firm f has perfect information about the value of {eij}∀j∈J f ∀i, and
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3. Each firm f has perfect information about the distribution, He, of the buyer/plant-level
shocks for other firms, {eik}∀k/∈J f

Thus, buyers know their preference shocks for every plant, and each firm knows the prefer-

ence shocks associated with its plants. Firms do not know the preference shocks associated

with the plants of other firms, but they do know how these shocks are distributed.

Firms submit plant-level bids simultaneously. Suppose a buyer i faces a vector of bids

{bij}j∈Ji , where Ji is the set of plants that have submitted bids. Our second assumption

introduces the second-score auction.

Assumption 2. (Second-Score Auction) Given a set of bids, {bij}j∈Ji , received by buyer i, the
second-score auction takes the following form:

1. Buyer i scores the bidding plants according to a rule given by

scoreij = uij − ϕbij , (2)

where the parameter ϕ converts the bid from units of currency to utils.

2. The winning plant is the one with the highest score. That is, plant j is the winner if and
only if

scoreij = max
k∈Ji

{uik − ϕbik}. (3)

3. The price is set such that the buyer is indifferent between transacting with the winning
plant at the price and transacting with the second-best option at that option’s bid. That
is, if plant j is the winning plant,

uij − ϕpij = max
k∈Ji\{j}

{uik − ϕbik}, (4)

where pij is the transaction price.

The transaction price is a function of bids in a manner that is similar to what occurs in a

second price auction, where the price paid equals the bid of the second ranked firm. All else

equal, higher scores are assigned to those plants that provide greater gross utility and those

that submit more attractive (i.e., lower) bids. The buyer uses the second-best alternative to

determine the price. Solving equation (4) for the price gives

pij =
1

ϕ

(
uij − max

k∈Ji\{j}
{uik − ϕbik}

)
(5)
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in the case where plant j wins. The model can be generalized to incorporate Nash bargain-

ing between the buyer and the winning firm after the scoring auction (Appendix B). In that

alternative setting, equation (5) obtains if sellers have all of the bargaining power.

We now characterize market shares and quantities. Let Aj(b), a function of b, the

vector of all bids, denote the combinations of characteristics and preference shocks (as

in equation (1)) for buyers for whom plant j has the highest score, and let the observable

buyer characteristics have the empirical distributionHD. The proportion of buyers choosing

plant j is

sj(b) =

∫
Aj(b)

dHD(D)dHe(e), (6)

and the plant-specific demand functions are given by

qj ≡ qj(b,M) = sj(b)M, (7)

where, again, M is the market size.

Turning to the supply side, we assume that each plant j has a marginal cost function

given by cj(qj). Our third assumption establishes the form the cost functions can take.

Assumption 3. (Marginal Costs) Let cj(qj) be a continuous plant marginal cost function. For
any two quantities q1j and q2j where q1j < q2j , we have that cj(q1j ) ≤ cj(q

2
j ).

That is, the marginal cost functions are continuous and non-decreasing in quantity. Firm

profits are

πf =
∑
j∈J f

[∫
Aj(b)

pijdH
D(D)dHe(e)M −

∫ qj

0
cj(q)dq

]
, (8)

which adds up revenue from the auctions won and subtracts production costs.

Our main theorem establishes that marginal cost bidding is a Nash equilibrium of the

simultaneous-move game defined by the auction format in Assumption 2.

Theorem 1. (Second-Score Auction Equilibrium) The following bidding strategies constitute a
Nash equilibrium of the auction described in Assumption 2:

bij =

{
cj(qj) if uij − ϕcj(qj) = maxk∈J f {uik − ϕck(qk)} ≥ 0

∞ otherwise
(9)

∀j ∈ J , ∀f ∈ F , and ∀i.

Proof. See Appendix A.1.

We refer to the difference between gross utility and marginal cost, measured in units of

currency (i.e., (1/ϕ) (uij − ϕcj(qj)), as the surplus that would be created if buyer i selects
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plant j. In equilibrium, each firm submits a finite bid to each buyer only from the plant that

can create the most surplus; this prevents the firm’s other plants from driving down price

through the buyer playing them off of each other. For its highest surplus plant, the firm

submits a bid equal to the marginal cost of the plant.

For a given set of cost functions, the equilibrium bids solve a fixed point problem. There

must be some vector of marginal costs such that, when firms bid at those marginal costs, the

quantities that obtain imply the same marginal costs. Equivalently, there must be market

shares that generate costs and bids that obtain the same market shares. We formalize using

market shares. A solution to the fixed point problem is defined by a vector of market shares,

{s∗j}j∈J , that solves

s∗j = sj({cj(s∗jM)}j∈J ) ∀j ∈ J , (10)

where cj(·) is the marginal cost function from Assumption 3 and sj(·) is the market share

function from equation (6).

An additional assumption on demand ensures that a fixed point exists.

Assumption 4. (Continuous Demand) The market share function of equation (6) is continu-
ous in terms of bids b.

The assumption requires that the gross utilities of buyers—incorporating the distributions

of observables and the preference shocks—are such that any arbitrarily small change in a

bid does not generate discrete changes in market shares. A number of standard functional

forms, such as those of logit or nested logit demand, satisfy this assumption. Because

marginal cost functions are continuous (Assumption 3), continuous demand ensures that

the combined function of equation (10) is continuous. We now examine the fixed point.

Theorem 2. (Fixed Point Existence) A fixed point for the problem defined by equation (10)

exists.

Proof. Equation (10) is a continuous vector-valued function in R|J |-space that maps the

set S = {{sj ∈ [0, 1]}j∈J |
∑

j∈J sj ≤ 1} into itself. The set S is nonempty, compact,

and convex. Therefore, by Brouwer’s Fixed Point Theorem, a fixed point of this function

exists.

As written, this theorem assumes the presence of a non-strategic outside good that is not

part of the set J . This outside good forms the residual share when
∑

j∈J sj < 1, so that

the shares sum up to 1. For a market with only two plants present, the set S is the triangle

with vertices at (0,0), (1,0), and (0,1) in R2-space, including the boundary.

In equilibrium, the surplus created by the winning plant is split between the seller and

the buyer, where, again, the surplus is given by (1/ϕ) (uij − ϕcj(qj)). The seller’s surplus is
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given by its markup, mij ≡ pij − cj(qj). Seller surplus does not fully account for variable

profit, as sellers also earn rent on infra-marginal sales with lower marginal costs. Subtract-

ing cj(qj) from both sides of equation (5) and evaluating at equilibrium bids yields:

mij =
1

ϕ

(
uij − ϕcj(qj)− max

k∈Ji\{j}
{uik − ϕck(qk)}

)
, (11)

where plant j is the winner of the auction. Thus, the seller’s surplus is the difference

between the surplus created by its best plant and the surplus that its competitors’ best

plant could have created. Restated, the incremental surplus created by the winning seller

determines the markup and the split of surplus. The buyer’s surplus is the residual; it equals

the maximum surplus that could have been created by the plants of the losing firms.

3.2 Nested Logit Demand

We use a nested logit demand system to make estimation tractable in the presence of ag-

gregated data. In doing so, we strengthen our assumption on the distribution of preference

shocks. We also assume that the observable portion of gross utility, uij , is the same within

sufficiently similar groups of buyers.9 We use county boundaries to delineate the groups.

Thus, gross utility comprises a component common to all buyers in the same county and a

preference shock that captures buyer-specific deviations. Finally, we incorporate an outside

good (e.g., steel, asphalt, or wood) that is supplied at a constant marginal cost.

Assumption 5. (Nested Logit Demand) The gross utility that buyer i, located in county n,
receives from plant j is

uij = ujn + ζi + (1− σ)ϵij , (12)

where each ϵij is distributed iid type 1 extreme value, ζi has the unique distribution such that
eij also is type 1 extreme value, and σ ∈ [0, 1) is a nesting parameter (Berry, 1994; Cardell,
1997). The gross utility provided by the outside good, labeled j = 0, is ui0 = (1− σ)ϵi0.

This assumption places all cement plants in one nest and the outside good in another

nest. Higher values of σ imply greater differentiation between cement plants and the out-

side good; if σ = 0 then a multinomial logit demand system obtains. An important empirical

advantage of the nested logit demand system is that analytical expressions exist for market

shares and markups, given a solution to the fixed point problem of equation (10).

Theorem 3. (Equilibrium Outcomes) Let {c∗j}j∈J be plant-level marginal costs that provide a
solution to the fixed point problem of equation (10). Then the market share, average markup,

9That is, for a given set of buyers within one of these groups, HD is a degenerate distribution that puts all
the probability weight on a single value.
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and average price of cement plant j in county n are given by:

s∗jn =
exp

(
ujn−ϕc∗j

1−σ

)
∑

k∈J exp
(
ukn−ϕc∗k

1−σ

)
(∑

k∈J exp
(
ukn−ϕc∗k

1−σ

))1−σ

1 +
(∑

k∈J exp
(
ukn−ϕc∗k

1−σ

))1−σ , (13)

m∗
jn = − 1

ϕ

1∑
k∈J f(j) s∗kn

log

1− (1− s∗0n)

1−

1−
∑

k∈J f(j)

s∗kn
1− s∗0n

1−σ ,(14)

p∗jn = m∗
jn + c∗j , (15)

where J f(j) is the set of plants owned by the firm that owns plant j. Furthermore, in county
n, the market share of the outside good, s∗0n, and average buyer surplus, CS∗

n, are given by:

s∗0n =
1

1 +
(∑

k∈J exp
(
ukn−ϕc∗k

1−σ

))1−σ , (16)

CS
∗
n = − 1

ϕ
ln (s∗0n)−

∑
j∈J

s∗jnm
∗
jn. (17)

Proof. See Appendix A.2.

Each plant obtains heterogeneous markups and prices from its buyers, even those within

the same county (see equation (11)), reflecting buyer-specific preference shocks and their

role in driving auction outcomes. The buyer surplus created in each transaction is likewise

heterogeneous. A property of nested logit demand is that the expected values of these

objects are functions of equilibrium market shares. We use the bar superscript for these

objects to indicate expected value, and refer to the expected values as averages to invoke

integration over a continuum of realized preference shocks.

3.3 Baseline Empirical Specifications

We now describe the baseline specifications for marginal cost and the common component

of gross utility. We also discuss import competition and how we measure market size. To

start, we build the plant-level marginal cost functions accounting for the reality that many

plants operate multiple kilns, especially early in the sample. We add notation for a time

dimension in the data given by t. We assume that the marginal cost of production at any

kiln l (operated by plant j in year t) is given by

c
(l)
jt

(
Q

(l)
jt ;Xt,θ

)
= w

(l)
jt α+ γ

(
Q

(l)
jt (·)

CAP
(l)
jt

− ν

)2

1

{
Q

(l)
jt (·)

CAP
(l)
jt

> ν

}
, (18)
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where Q(l)
jt is the output of the kiln, Xt contains the exogenous data, w(l)

jt is a vector of kiln-

specific cost-shifters, CAP (l)
jt is the capacity of the kiln, and the parameters in the vector

θ include (α, γ, ν). The cost-shifters include a constant, a time trend, and the fuel cost

of production. We demonstrate the robustness of our results to additional controls and

region and time fixed effects in Appendix E.10 Kiln-level marginal costs increase in output

once utilization exceeds ν. Ryan (2012) and Miller and Osborne (2014b) use similar cost

functions.

We assume plants allocate output across kilns to minimize cost. For low-enough output,

this entails using the most efficient kiln. However, as higher levels of utilization are reached,

production from less efficient kilns becomes economical, and cost minimization dictates

that plants equate the kiln-specific marginal costs of the kilns they use. We construct a

continuous and weakly increasing plant-level marginal cost function, cjt(Qjt;Xt,θ), from

the kiln-level marginal cost function of equation (18). Appendix Figure G.2 shows the

marginal cost function obtained for one of the multi-kiln plants in our data.

On the demand side, we assume that the common component of gross utility reflects the

disutility of transportation and whether the supplier is an importer. Shipments go by truck

directly from the plant to the buyer, or by barge utilizing the Mississippi River System—

whichever is less costly. The baseline specification is:

ujnt(Xt,θ) = min{β1dj→n , β1 (dj→R + dR→n) + β2}

+ β3TRENDt + β4IMPORTj + β5IMPORTj × TRENDt + β0 (19)

The first line on the right-hand-side is the disutility of transportation, where dj→n is the

distance between the plant and the county, dj→R is the distance between the plant and the

Mississippi River System, and dR→n is the distance between the Mississippi River System

and the county. The parameters β1 and β2 capture the per-mile disutility associated with

overland transportation and a fixed disutility associated with barge transportation. We

include a time trend, an indicator for imports, a time trend for imports, and a constant

for the inside goods. Thus, the specification accommodates that barge transportation is

more efficient per mile, but imposes upfront costs. It also allows the relative desirability of

domestic plants, importers, and the outside good to shift over time. We show the robustness

of our results to additional specifications in Appendix E.

We assume imports are provided by a competitive fringe that ships into each of the

active customs districts (Appendix D.2). The fringe submits bids equal to the customs value

of imported cement, inclusive of insurance, freight, and other delivery charges to the port of

10The results without fixed effects are our preferred specification due to computational constraints, as the
fixed effects take a significant time to estimate.
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entry, which is in the data. If actual bids differ, the import dummy in gross utility provides

an adjustment. We allow buyers to purchase from any active customs district. Finally,

we measure market size at the county-year level using data on construction employment,

following Miller and Osborne (2014b). Details are in Appendix D.3.

4 Estimation and Estimation Results

4.1 Objective Function

Our estimation strategy involves selecting parameters that minimize the distance between

data on endogenous outcomes (e.g., aggregated price and quantity data) and corresponding

model predictions. This approach is used in Miller and Osborne (2014b) and Elickson et al.

(2020), which also estimate models of spatial differentiation. We assume a data generation

process in which each observed endogenous outcome is generated as follows:

ymt = hmt(Xt;θ0) + ωmt, (20)

where ymt is outcome m in year t, hmt(Xt;θ0) is a known function defined by the model

that returns the corresponding model prediction given data and parameters, and ωmt is a

stochastic term satisfying E[ωmt|Xt] = 0. We enumerate the endogenous outcomes later

in this section. The exogenous data in Xt includes the locations and market size of each

county, the customs value of imported cement, the locations of the customs offices, the loca-

tions, kiln fuel costs, and kiln capacities of cement plants, and the location of the Mississippi

River System. The parameters to be estimated are θ0 = (β,α, ϕ, γ, ν, σ).

We use nonlinear least squares to estimate the parameters. The loss function is

L(θ;X) =
∑
m

κm
1

||Tm||
∑
t∈Tm

(ymt − hmt(Xt;θ))
2 , (21)

where Tm includes the years in which outcome m is observed and κm is the weight we place

on the endogenous outcome, which we set based on its (inverse) sample variance. To eval-

uate the loss function for a candidate parameter vector, we compute equilibrium by solving

the fixed point problem of equation (10), and then aggregate the equilibrium predictions

to the level of the data. We target the following endogenous outcomes in estimation:

1. Average price of plants by region. There are 63 price regions. The average region is

observed for 18 years, and the average year has 25 price regions.

2. Total production by region. There are 62 production regions. The average region is

observed for 18 years, and the average year has 24 production regions.
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3. Total consumption by region. There are 57 consumption regions. The average region

is observed for 44 years, and the average year has 55 production regions.

4. The proportion of production accounted for by plants with a wet kiln. This is observed

in 45 years of the 46 years in the estimation sample (there are no data for 1991).

5. The proportion of cement that is shipped using river barges. This is observed in all of

the 46 years in the estimation sample.

6. The proportion of cement shipped from regions in California to regions in California,

Arizona, and Nevada. There are 88 observations overall (see Section 2.3).

We discuss identification, the computational burden of estimation, and consistency in Ap-

pendix D. We also provide additional details about implementation.

4.2 Estimation Results

Table 1 summarizes the estimation results we obtain with the baseline specification. On

the demand-side, buyers incur disutility from transportation; the overland transportation

cost is $0.42 per tonne-mile (β1/ϕ), and the per-tonne barge loading cost is $82 (β2/ϕ).

Most shipments are local. In equilibrium, 89% of shipments use overland transportation

exclusively (i.e., they do not use a river barge), and, of these, the median shipment is 78

miles, and 84% travels less than 200 miles. Conditional on a barge being used, the median

distance between a plant and the buyer is 532 miles. Buyers prefer cement to the outside

good; buying cement is worth $86.40 more to a buyer (β0/ϕ), all else equal. The time trend

is small and not statistically significant. We also find that buying imported cement is worth

$17.40 to a buyer (β4/ϕ). This preference grows over time, consistent with better reliability

or availability of imported cement.

We find that marginal costs increase with fuel costs and as production approaches ca-

pacity. The fuel cost parameter of 1.75 implies that fuel costs are more than fully passed

through to bids, consistent with recent studies of cost pass-through in the cement industry

(Miller et al., 2017; Ganapati et al., 2020). The constant implies that other inputs (e.g.,

materials, labor) contribute $30.95 to marginal cost per metric tonne in the average year.

The capacity cost parameters imply that producing at capacity increases marginal cost by

$20.73 per metric tonne relative to producing at a utilization rate less than 29%.11

The price parameter (which we estimate) and the nesting parameter (which we pre-set

at 0.90) together imply median bid elasticities of demand of -3.10 at the plant level but

only -0.10 at the industry level. Thus, most buyer substitution is from one cement plant
11Appendix Figure G.3 plots marginal cost over the sample period, averaging across plants, along with a

decomposition that separates the constant portion and the portion due to capacity constraints.
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Table 1: Parameter Estimates and Derived Statistics

Parameter Estimates Std. Error

Gross Buyer Utility
Constant β0 0.432 (0.043)
Overland Miles (000s) β1 -2.299 (0.090)
River Barge Used β2 -0.451 (0.007)
Time Trend β3 -0.001 (0.001)
Imported Cement β4 0.087 (0.017)
Imported Cement × Time Trend β5 0.004 (0.001)

Marginal Cost
Constant α0 30.95 (2.27)
Fuel Cost α1 1.75 (0.05)
Time Trend α2 0.124 (0.028)
Capacity Cost γ 41.12 (8.63)
Utilization Threshold ν 0.289 (0.089)

Other Parameters
Price Parameter ϕ 0.005 (0.000)
Nesting Parameter σ 0.9 —

Transportation Costs
Overland Cost ($ per Tonne-Mile) β1/ϕ 0.42
Barge Cost ($ per Tonne) β2/ϕ 82.46

Bid Elasticity of Demand
Plant-Level Demand -3.10
Demand for Cement -0.10

Notes: The results are based on nonlinear least squares estimation. Fuel Cost and
the time trends are demeaned. Standard errors are shown in parentheses.

to another, rather than from cement plants to the outside good. This reflects the high

nesting parameter, which we select based on our qualitative understanding that cement has

significant advantages in most of the projects for which it is used because it is cheap, locally

available, and has low maintenance costs (van Oss and Padovani, 2003). We have found it

is difficult to identify the nesting parameter in practice. In Appendix E, we show that our

results are robust to different values of the nesting parameter.

The mean markup in the sample is $22.32 per metric tonne, relative to a mean price of

$94.82.12 We find that the mean price-over-cost (p/c) margin and Lerner Index ((p− c)/p)

are 1.32 and 0.24, respectively. Cement firms also profit from rents because marginal cost

functions are upward-sloping. The average rent is $10.94 per metric tonne and, adding this

to the markup, average variable profit is $33.26 per metric tonne. As mean buyer surplus

is $116.17 per metric tonne, buyers capture most of the welfare benefits generated by the

12All means reported in this paragraph are quantity weighted.
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industry.

We assess the model by evaluating its fit for the targeted endogenous outcomes and

comparing its predictions to external sources. Appendix Figure G.4 plots the time series of

total consumption, total production, and average price, along with the corresponding model

predictions. Appendix Figures G.5 and G.6 show the fit of the model to the California Letter
data on cross-region shipments, the panel data on consumption, production, and prices, and

the time-series of production by wet kilns and the prevalence of barge shipments. Overall,

our interpretation is that the model fits the data well.

For the external comparisons, a Census Bureau (1977) study reports that more than

80% of cement is transported within 200 miles, and the 1974 Minerals Yearbook reports

average overland transportation costs of $0.43 per tonne-mile for trucking. Our analogous

estimates are 84% and $0.42 per tonne-mile, respectively. Miller and Osborne (2014b)

estimates a median firm-level price elasticity of -3.22 and Ganapati et al. (2020) estimates

a plant-level demand elasticity of -2.90; our bid-elasticity is -3.10. Chicu (2012) and Fowlie

et al. (2016) estimate more elastic demand elasticities of -6.55 and -7.35, respectively.13

5 The Evolution of Market Outcomes

5.1 Market Power

We now examine how market concentration and markups evolve over the sample period,

relate those changes to each other and to prices, and explore mechanisms. We use county-

level HHIs to measure concentration. In calculating the HHI, we exclude the outside good

and treat imports as being provided by one distinct supplier of cement; alternative treat-

ments of imports do not significantly affect our results. For our baseline markup measure,

we use price minus marginal cost, which we obtain at the county-plant level. We also report

price-over-cost (p/c) markups for comparability with De Loecker et al. (2020).

Figure 4 summarizes how concentration and markups have changed over time. The

top panel shows that the quantity-weighted median HHI increased from 1876 to 2727 over

the sample period, equivalent to a reduction in the number of symmetric competitors from

roughly 5.3 to 3.7. Applying the 2023 Merger Guidelines, the proportion of consumption

that occurs in “highly concentrated” counties (HHI≥1800) rose from 55% to 84%. The

proportion of consumption in counties with concentration levels that are at least triopoly-

equivalent (HHI≥3333) rose from 27.6% to 39.3%, and the proportion of consumption

in counties with HHI under 1500 fell from 33.1% to 9.8%. From 1974 to 2019, the HHI
13Chicu (2012) estimates demand using older data that span 1949-1969. The market-level demand functions

estimated in Fowlie et al. (2016) imply plant-level elasticities under their assumptions of Cournot competition.
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Figure 4: Changes in Local Market Concentration and Markups

Notes: The figure plots the quantity-weighted median county-level HHI (top panel), the quantity-weighted
median markup in dollars per metric tonne (bottom left panel), and the quantity-weighted median price-over-
cost markup (bottom right panel). The markup statistics are shown for all plants, plants with old technology,
and plants with modern technology.

increased in 77.2% of counties. These statistics point to a significant, widespread increase

in concentration contemporaneous with the transition to precalciner technology.14

Turning to markups, with our baseline measure, the quantity-weighted median markup

steadily increased over the sample period, rising from $20.02 in 1974 to $21.08 in 2019,

representing a 5.27% increase (bottom left panel, solid line). With price-over-cost markups,

the quantity-weighed median increases more quickly in the 1980s, and then levels off (bot-

tom right panel, solid line). The overall rise is from 1.24 to 1.31, representing a 5.31%

increase.15 The relative flatness of price-over-cost markups in more recent years is due to

the combination of higher baseline markups and higher prices. Our results indicate signifi-

cant spatial differences exist, with markups increasing in 78.8% of counties, and decreasing

in the other 21.2%. That we find rising markups is consistent with the results of De Loecker

14In Appendix E, we show that even under a range of alternative estimation specifications, the increase in
the county-level HHI is always substantial.

15Appendix Figure G.7 shows that changes in the Lerner Index resemble those of price-over-cost markups. In
Appendix E, we show that the increase in markups remains modest across a range of alternative specifications,
usually amounting to about a dollar or less.
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et al. (2020) for the manufacturing sector in which cement is classified (NAICS Code 32),

although the magnitude of change that we estimate is much smaller; De Loecker et al.

(2020) find that price-over-cost markups increased from 1.35 in 1974 to 1.96 in 2016.

The figure also plots the change in markups separately for plants with modern technol-

ogy (dotted lines) and other plants (dashed lines). The markups of plants with modern

technology are higher than those of other plants and increase more over time. Thus, the

overall markup trend reflects both compositional change in the sample, as more plants tran-

sition to modern technology, and increasing markups within the set of plants with modern

technology. The latter effect could be due to the closure of some plants with old technology;

we return to mechanisms later in this section.

While we consider the increase in concentration significant, the markup changes are

reasonably characterized as modest. In support of this interpretation, we note that small

changes in the model can eliminate the markup trend. For example, if we compute equilib-

rium in 2019 using a price coefficient that is 5% smaller than our estimate, then we obtain

a quantity-weighted median markup that is virtually indistinguishable from what we report

for 1974 using the baseline model. Analogously, in Appendix B, we extend the model to

incorporate Nash bargaining between the buyer and the winning bidder, and derive that a

5% reduction in cement firms’ bargaining power would eliminate the markup trend.

We now analyze the panel variation in the model predictions, and in particular, explore

whether concentration changes correlate with changes in markups and prices.16 Figure 5

shows scatter plots of the county-level HHI changes against county-level average markup

changes (top panel) and county-level average price changes (bottom panel). Each circle

represents one county, and the areas of the circles are proportional to county-level con-

sumption. There is a clear positive correlation between the HHI and markup changes—

those counties that experienced the greatest increase in concentration also experienced the

largest increase in markups. The line of best fit has an R2 of 0.448. In contrast, the rela-

tionship between the HHI and price changes is less obvious. Although there is a positive

correlation, many counties experienced an HHI increase with a price decrease, or vice versa.

This is reflected in the smaller R2 of 0.065.

These broad patterns are consistent with an effect of precalciner kilns. Technology that

expands capacity and lowers marginal cost can increase concentration by inducing the exit

of some firms, just as it can increase markups by lowering marginal cost and reducing

competition (due to induced exit). Yet the implications for price can be ambiguous to the

16The model provides a rich set of county-plant specific prices and a correspondingly rich set of shipment
patterns. Fully exploring the spatial patterns is beyond the scope of this paper. To give some sense, however, in
Appendix G we show that plants obtain both higher prices and greater market shares in nearby counties, with
the degree of markup dispersion depending on the presence of competitors (Appendix Figure G.8). We also
provide a map of plants and buyers that transport over the Mississippi River System (Appendix Figure G.9).
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Figure 5: Markup and Price Changes Plotted Against HHI Changes, 1974 to 2019

Notes: The figure plots the county level changes in average markups (top panel) and average prices (bottom
panel) against the county level changes in the HHI. The vertical axes are in dollars per metric tonne. The circles
are proportional to consumption. The county level changes are those predicted by the model, although we
recenter the price changes so that the average price change between 1974 and 2019 match with changes in the
average national-level price that are observed in the data. Also shown are lines of best fit and the R2 of the fits.

extent that marginal cost reductions and the loss of competition have opposing effects.17

Still, a number of alternative mechanisms can generate similar relationships between

concentration, markups, and prices, and we conduct decomposition exercises to extend the

analysis. In the data, we observe changes in a wide range of market factors that bear on

17Our analysis illustrates in a particular empirical setting how both price and the HHI are equilibrium out-
comes that are determined by demand and supply factors. The correlation between them can be positive or
negative, depending on what gives rise to the empirical variation, and the sign of the correlation need not
inform the extent to which competition matters for price (e.g., Miller et al., 2022).
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equilibrium outcomes: plant closures, technology adoption, entry, mergers, fuel prices, and

so on. To examine which of these matter most, we start with the 1974 data and introduce

changes in sequence, computing equilibrium with each change, until we obtain the 2019

data. We then examine how concentration, markups, and prices shift as we move from

1974 to 2019 conditions.

The specific sequencing of the counterfactuals that we use is as follows:

(i) Use the 2019 county sizes, fossil fuel prices, and the 2019 value of the demand and

cost time trends.

(ii) Apply (i) and remove all plants that are not present in the 2019 data. We interpret

this as measuring of the short run influence of plant closures.

(iii) Apply (ii) and use the 2019 kiln technologies, including the primary fuel choice. We

interpret this as measuring the short run influence of technology adoption.

(iv) Apply (iii) and add plants that are present in 2019 but not 1974. We interpret this as

measuring the short run influence of entry.

(v) Apply (iv) and also use the 2019 plant ownership structure. We interpret this as

measuring the short run influence of mergers and acquisitions.

With the final step, we reproduce the 2019 data. The interpretations we offer represent

short run effects because the incentives for technology adoption, exit, entry, and mergers

are intertwined in long run equilibrium. One relationship that is particularly relevant in

our application is that the adoption of a cost-reducing, scale-increasing technology by some

plants is likely to induce others to exit. Thus, what is isolated in step (ii) likely incorporates

a long run effect of technology adoption, a matter that we revisit in the next section.18

Figure 6 summarizes the results of the decomposition exercise. Three waterfall graphs

are provided, one each for the quantity-weighted median county-level HHI (top panel),

the quantity-weighted median county-level additive markup (bottom left panel), and the

quantity-weighted median county-level price (bottom right panel). The gray bars on the

left and right provide the values in 1974 and 2019, respectively. The bars in the middle

give the incremental effect of each sequenced change in the market, as enumerated above.

We shade these bars blue for increases and red for decreases.

18We scale the plant capacities in step (i) so that total capacity aligns with that of 2019, which avoids mis-
matches in supply and demand that could mask more interesting mechanisms. We then use the true capacities
of the plants in 2019 starting in step (iii). With these adjustments, the results more usefully summarize the
economics at play. We also apply a centering correction in our price analysis so that the total change between
1974 and 2019 matches the change in the average national-level price observed in the data.

24



19
74

20
19

 

Co
nd

itio
ns

Pla
nt

 

Clo
su

re
s

Mo
de

rn
 

Te
ch

Ne
w 

Pla
nt

s
Me

rg
er

s
20

19
15

00

17
50

20
00

22
50

25
00

27
50

30
00

32
50

35
00

1,
87

6
2

87
1

-1
02

-2
06

28
6

2,
72

7

H
H

I
In

cr
ea

se
De

cr
ea

se

19
74

20
19

 

Co
nd

itio
ns

Pla
nt

 

Clo
su

re
s

Mo
de

rn
 

Te
ch

Ne
w 

Pla
nt

s
Me

rg
er

s
20

19
19

.0

19
.5

20
.0

20
.5

21
.0

21
.5

22
.0

20
.0

2

-0
.0

4

0.
66

-0
.0

1
-0

.1
4

0.
58

21
.0

8

M
ar

ku
p

In
cr

ea
se

De
cr

ea
se

19
74

20
19

 

Co
nd

itio
ns

Pla
nt

 

Clo
su

re
s

Mo
de

rn
 

Te
ch

Ne
w 

Pla
nt

s
Me

rg
er

s
20

19
9010
0

11
0

12
0

13
0

14
0

10
2.

46

15
.1

9

16
.7

1

-2
5.

09

-7
.5

2

0.
43

10
2.

18

Pr
ic

e
In

cr
ea

se
De

cr
ea

se

Fi
gu

re
6:

Sh
or

t
R

un
D

et
er

m
in

an
ts

of
H

H
I,

M
ar

ku
p,

an
d

Pr
ic

e
C

ha
ng

es

N
ot

es
:

Th
e

fig
ur

e
pr

ov
id

es
w

at
er

fa
ll

gr
ap

hs
fo

r
th

e
qu

an
ti

ty
-w

ei
gh

ed
m

ed
ia

n
co

un
ty

-l
ev

el
H

H
I(

to
p

pa
ne

l)
,t

he
qu

an
ti

ty
-w

ei
gh

ed
m

ed
ia

n
co

un
ty

-l
ev

el
ad

di
ti

ve
m

ar
ku

p
(b

ot
to

m
le

ft
pa

ne
l)

,a
nd

th
e

qu
an

ti
ty

-w
ei

gh
ed

m
ed

ia
n

co
un

ty
-l

ev
el

pr
ic

e
(b

ot
to

m
ri

gh
t

pa
ne

l)
.

M
ar

ku
ps

an
d

pr
ic

es
ar

e
in

do
lla

rs
pe

r
m

et
ri

c
to

nn
e.

25



We find that plant closures contribute 871 points to the median HHI. Other meaningful

factors include mergers, which contribute 286 points to the median HHI, and new technol-

ogy adoption and plant entry, which reduce the median HHI by 102 and 206 points, respec-

tively. For markups, the main contributing factors are plant closures ($0.66) and mergers

($0.58). Modern technology has almost no direct effect on markups (-$0.01). The changes

in markups are small relative to average prices. Finally, we find that changes in demand and

cost conditions contribute to higher prices ($15.19), as do plant closures ($16.71). Plant

closures have a bigger effect on prices than markups because they increase the remaining

plants’ utilization (and thus their marginal costs). Offsetting these factors, we obtain price

reductions from the adoption of modern technology ($25.09) and plant entry ($7.52). The

effect of modern technology on prices is mainly due to better fuel efficiency and greater

capacity, both of which reduce the marginal cost of production. Mergers increase prices by

a much smaller amount ($0.43) that is commensurate with their effect on markups.

The decompositions are consistent with the main short run effects of technology adop-

tion in the cement industry being marginal cost reductions that are passed through to ce-

ment buyers in the form of lower prices. To the extent that technology adoption contributes

significantly to rising concentration and markups, our analysis indicates that it is through

its effect on long run decisions, including on plant closures. We explore scale economies in

greater quantitative detail in Section 5.3 to better understand long run effects.

Returning to the panel variation, we also note that the equilibrium model informs not

only how and why concentration and markups changed over time, but also the location of

changes. To illustrate these distributional effects, Appendix Figure G.10 provides maps with

the HHI for each county in 1974, the HHI in 2019, and the change in the HHI from 1974

to 2019. Appendix Figures G.11 and G.12 do the same for average markups and prices,

respectively. The level and change in the HHI, markups, and prices tend to be more modest

in counties near the Mississippi River System. By contrast, counties with higher levels and

greater changes—positive or negative—tend to be more isolated, such that the entry or

closure of a single plant in the region, or changes in the accessibility of imports at nearby

ports, can matter significantly. Thus, our results point to the Mississippi River System as a

conduit that, by connecting a large number of buyers and suppliers, helps produce outcomes

that are less extreme and more stable over time. More generally, our model helps explain

the spatial distribution of equilibrium effects in industries such as cement.

5.2 Welfare Statistics

Another benefit of the equilibrium model is that it allows us to examine how variable

profit, buyer surplus, and welfare—which we define as the sum of variable profit and buyer

surplus—change over the sample period. Our approach is to compute equilibrium holding
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Figure 7: Changes in Variable Profit, Buyer Surplus, and Welfare

Notes: The figure plots indices for variable profit, buyer surplus, and welfare normalized to one in 2019. The
welfare statistics are computed by holding demand-side conditions fixed as of 2019 and simulating outcomes
given the supply-side conditions as they change over the sample period.

all demand-side considerations fixed at their 2019 values, and allowing supply-side con-

siderations to adjust over the sample.19 Thus, we assess how supply-side changes affect

overall gains-from-trade, given the same set of buyers; an advantage is that this reduces the

influence of market size assumptions on the results.

Figure 7 plots the welfare statistics as indices that equal one in 2019. We highlight

two patterns. The first is that variable profit, buyer surplus, and welfare move together,

increasing from 1980 to 2000, and falling afterward. This tracks changes in fossil fuel

prices and cement plants’ fuel costs (Appendix Table G.15). More gains-from-trade exist

when fossil fuel prices are low, and these gains are split between buyers and sellers. The

second pattern is that welfare is nearly identical in 1974 and 2019, reflecting that buyer

surplus increased by three percentage points over the sample period and variable profit

decreased by seven percentage points. Therefore, the trend toward greater concentration

presented earlier does not correlate with reduced buyer surplus or reduced gains-from-

trade, just as it does not correlate with rising prices over time or in the panel variation.

Appendix Figure G.13 shows the results of a waterfall decomposition similar to what we

use for concentration, markups, and prices; the difference is that, in this exercise, demand

conditions are held fixed at 2019 values throughout. We find that buyer surplus decreases

19The demand-side factors include the county-level market sizes and the demand time trend and its inter-
action with imports. The supply-side factors include the cement plants and their production technologies, the
marginal cost time trend, fuel prices, and the active customs districts. We adjust plant capacities each year
so that the ratio of industry capacity to market size does not change; this ensures that mechanical changes in
capacity utilization do not drive results.
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due to plant closures but increases due to new technology adoption and entry, reflecting

anticipated impacts on competition, capacity, and fuel costs. The opposite patterns obtain

for variable profit. Welfare resembles variable profit qualitatively, but is more muted, and

the net effect moving from 1974 to 2019 is about zero, consistent with the index result.20

5.3 Economies of Scale

We take the perspective of a plant that has one or more old kilns. The plant pays oper-

ational fixed costs for each kiln due to associated salaried labor, the cost of ramping the

kiln after its previous maintenance period, and any future maintenance costs. The capital

costs associated with installing the old kilns are sunk. The plant can replace its old kilns

with a precalciner kiln. If it does so, it incurs an upfront capital cost and then must pay an

operational fixed cost in each future year. Under these assumptions, the annualized total

fixed cost can be represented as

TFC =

{
F if keep old kiln

(1− δ)E + F ′ if adopt precalciner
(22)

where δ is the discount factor, F and F ′ are the operational fixed costs of the old and new

technologies, respectively, and E is the capital cost required for the new technology. To

obtain this expression, we assume that both technologies are infinitely-lived, which is a

reasonable approximation given that kilns tend to operate for many decades.

We assume a discount factor of δ = 0.90. For the capital cost, we make assump-

tions based on the CEMBUREAU estimates of construction costs (discussed in Section 2.2).

Specifically, we assume that the capital cost is C175 million, and we convert that to dollars

using the average closing price of the exchange rate in 2010, which is 1.33. This implies

a capital cost (E) of $233 million.21 Finally, for the operational fixed cost, we apply the

two-sided bounds approach of Eizenberg (2014). In doing so, we exploit 242 instances in

which we observe that a kiln is not operated during a year. This is referred to as “idling”

or “mothballing” a kiln and it is often done when demand conditions are unfavorable. In

Appendix F, we develop the bounds formally and provide details on implementation.

Table 2 summarizes our numerical analysis of fixed costs. For the operational fixed

costs, we obtain an estimated set that provides model-implied bounds, separately for old

kilns and modern kilns. We report a 95% confidence interval around those estimated sets.

20We find it interesting that welfare decreases with technology adoption in this analysis. Mechanically, the
effects on buyer surplus and markups roughly offset because industry demand is inelastic. The remaining effect
on welfare is through infra-marginal rents, which decrease as capacity expands relative to demand.

21In the Appendix, we recreate the main figures of this section using capital costs of $116 million (50% lower)
and $349 million (50% higher). See Appendix Figure G.14.
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Table 2: Numerical Analysis of Fixed Costs

Operational Total Total
Fixed Cost Capital Cost Fixed Cost Fixed Cost

Bounds (Annualized) Bounds Midpoint

Wet and Long Dry Kilns [0.44 , 4.16] Sunk [0.44 , 4.16] 2.30
Modern Preheater/Precalciner Kilns [0.70 , 13.67] 23.27 [23.97 , 36.95] 30.46

Notes: For the operational fixed costs, we provide a 95% confidence interval for the estimated set, based on the two-
sided bounds approach of Eizenberg (2014). The annualized capital cost incorporates a discount factor of δ = 0.90
and a capital cost of $233 million. Total fixed cost is the sum of operational fixed cost and capital cost. Units are in
millions of dollars.

For each old kiln the confidence interval is [0.44 , 4.16], and for each modern kiln it is

[0.70 , 13.67], where units are in millions of real 2010 dollars. These confidence intervals

overlap but we cannot rule out the operational costs are significantly higher for modern

kilns. Putting these together with capital costs, we obtain an interval of [23.97 , 36.95] for

the total fixed cost of modern kilns. Finally, for the analyses below, we assume that total

fixed costs are at the midpoint of the bounds. This provides $2.30 million per kiln-year for

old kilns and $30.46 million per kiln-year for modern kilns.

With this quantification of fixed costs, we recover an average cost function for each

plant and year in the sample. Figure 8 provides an illustrative example using the Essroc

plant in Nazareth, Pennsylvania. The left panel shows the plant’s average cost and marginal

cost functions in 1976, before adoption, and the right panel shows those functions in 1977,

after adoption. The vertical dotted lines show equilibrium quantities (q∗). The efficient

level of production increases from 0.71 million metric tonnes to 1.2 million metric tonnes

due to the adoption of modern technology. Average cost at the efficient level of production

decreases from $120 to $103 per metric tonne, relative to national average prices around

$114 per metric tonne. Also of note, profitable adoption requires an expansion of output. If

the plant had held its output fixed at its initial level of 0.49 million metric tonnes, adoption

would have increased average cost from $125 to $132. Instead, the equilibrium output

increases to 0.81 million metric tonnes, and average cost falls.

To generalize across plants, we use the ratio of average cost to marginal cost, which is a

standard measure of scale economies (Syverson, 2019). If the ratio is greater than one then

average costs are decreasing in output, meaning economies of scale exist. If it is less than

one then diseconomies of scale exist, and if it equals one then output is at the efficient level.

Furthermore, as the ratio of average cost to marginal cost equals the inverse of the elasticity

of total cost with respect to quantity, its value can be interpreted as the percentage change

in quantity that can be obtained from a one percent increase in cost, sometimes referred to

as the scale elasticity. We calculate the ratio for every plant and year and examine how scale
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Figure 8: Plant-Level Cost Functions (Illustrative Example)

Notes: The figure plots marginal cost (MC) and average total cost (AC) functions at an Essroc plant in Nazareth,
Pennsylvania. The left panel provides the cost functions in 1976, the final year before the plant adopted
precalciner technology. The right panel corresponds to the year 1977. In both panels, the vertical axis is in
dollars per metric tonne and the horizontal axis is in millions of metric tonnes. The vertical dotted lines show
the equilibrium plant quantities (q∗).

economies have evolved.

Figure 9 plots the quantity-weighted median scale elasticity evaluated at equilibrium

quantities (left panel). The median scale elasticity increases from 1.05 in 1974 to 1.28

in 2019. The scale elasticity is greater for plants with modern technology than for plants

with old technology, and the upward trend in the industry-wide number is mainly due to a

compositional shift toward modern technology. These results incorporate output expansion,

which partially exhausts scale economies created by modern technology. Therefore, we

repeat the analysis holding output fixed (right panel). With this counterfactual, median

scale elasticity increases from 1.12 in 1974 to 2.38 in 2019. Thus, the amount of additional

output that can be generated by incurring an increase in costs nearly doubles.

This analysis of scale elasticities points to an advantage of our modeling approach.

Namely, we are able to identify the impact of technological change separately from its im-

plication for the equilibrium scale elasticity, which is an endogenous outcome. Our results

indicate that modern kiln technology has significant scale-increasing effects.

As a final exercise, in Figure 10 we examine the ratio of price to average cost, a measure

of economic profitability. The left panel plots this ratio evaluated at equilibrium quantities.

We focus on plants with modern kilns because we have a measure of the capital costs for

those kilns. The ratio is below one and then increases over time until it stabilizes around

one for the back half of the sample, which we interpret as being consistent with plants’

greater variable profit from adoption being just enough to recover the fixed costs associated

with adoption. (Alternatively, if one has a prior that the cement industry is characterized by

free entry and exit in the long run, the results are consistent with our fixed cost estimates
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Figure 9: Changes in the Scale Elasticity

Notes: The panels plot the scale elasticity evaluated at equilibrium quantities (left) and at quantities that are
fixed at the average 1974 level (right). Quantity-weighted medians are shown for all plants, plants with old
technology, and plants with modern technology.
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Figure 10: Changes in the Ratio of Price to Average Cost

Notes: The panels plot the quantity-weighted median ratio of price to average cost, at equilibrium quantities
(left) and at quantities that are fixed at the average 1974 level (right). The median is among plants with
modern technology.

being in a reasonable range.) However, if the ratio is evaluated at fixed quantities (right

panel), it is well less than one throughout the sample period. Again, this is consistent with

output expansion being necessary for profitable adoption, and supports that the adoption

of modern kiln technology contributed to the many observed plant closures.

5.4 Comparison to the Production Approach

We now compare our markup results to those of De Loecker et al. (2020) [“DLEU”], which

uses the so-called production approach to recover price-over-cost markups from accounting

data on publicly-traded firms. The production approach involves first estimating the elastic-
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Figure 11: Comparison to the Production Function Approach

Notes: The left panel plots the sales-weighted average price-over-cost markup obtained from our model (solid
line) and from an implementation of the production approach that tracks DLEU (dashed line). The right panel
plots total industry variable profit over time, which we obtain from our model.

ity of output with respect to a freely adjustable variable input. Then, under an assumption

of cost minimization, the price-over-cost markup is obtained as the output elasticity mul-

tiplied by the ratio of sales to expenditures on the variable input. DLEU uses the cost of

goods sold (COGS) as the variable input. We implement by pairing the output elasticities

provided in the DLEU replication files with accounting data from Compustat for firms classi-

fied under NAICS code 327310 (“cement manufacturing”). As the DLEU output elasticities

run through 2016, we assume that the output elasticity is constant over 2016-2019.

We plot our sales-weighted mean price-over-cost markup alongside the production-

approach estimate for cement firms in the left panel of Figure 11. Both measures are similar

in magnitude. Averaging across years, we obtain 1.32, and the production approach obtains

1.28. However, markups from the production approach are significantly more pro-cyclical.

To illustrate, the right panel provides a plot of industry-wide variable profit. A similar

pattern arises in a recent study on automobiles (e.g. Grieco et al., 2024), with markups

from the production approach being more pro-cyclical than those from a structural model.

Mechanically, changes in the production approach markups are due to the ratio of sales to

COGS because the DLEU output elasticity changes little over the sample period: the average

is 0.860, and the standard deviation is 0.027.

A full exploration of this difference is beyond the scope of our study. Still, it is worth

noting that our model incorporates capacity constraints, so favorable macroeconomic con-

ditions can induce firms to produce more and shift to a higher point on their marginal cost

function, thereby reducing the procyclicality of markups. We also posit that the use of sales

and expenditure variables, rather than output and input variables, in production function

estimation (e.g., as in DLEU) might lead the production approach to overstate the pro-
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cyclicality of markups. However, there are other reasons that the two markup series are not

immediately comparable. As one example, the largest cement firms operate internationally,

and Compustat provides data on their global activity, not their US operations.

6 Conclusion

In this paper, we trace out the effects of a major technological advance in the cement

industry—the precalciner kiln—and connect our results to the literature on The Rise of
Market Power. We find significant increases in concentration, but markups increase only

modestly, and real prices do not rise. These empirical patterns can be understood through

the economics of precalciner technology, which lowered the marginal cost of production

and significantly increased plant-level capacities, thereby contributing to an industry shake-

out in which many plants closed. Our findings underscore the importance of accounting for

technological change when assessing the implications of market concentration.

Our analysis is subject to limitations. We highlight three here. First, although we present

evidence consistent with precalciner technology contributing to the shakeout that occurred

during the sample period, we do not model that dynamic process formally because it would

require sacrificing some of the modeling realism that lends credibility to our results. With

our results in hand, however, there is an improved ability for future research to extend

in that direction (e.g., as in Igami, 2017; Igami and Uetake, 2020). Second, there is an

important role for research that synthesizes results obtained across various industries. In

the context of The Rise of Market Power, this is increasingly likely to be fruitful, as studies

have now been conducted in a number of different contexts; an early attempt is made

in Miller (2025). Finally, our methodological approach uses modeling to infer objects of

interest, such as local market concentration and markups. To the extent that more detailed

data can be obtained—in the United States or elsewhere—a more data-driven analysis could

provide useful insights that could corroborate (or contradict) our findings.

Other possibilities for future research involve extending our model to examine new re-

search questions. For example, one could study the efficacy of merger policy, leveraging

that the Federal Trade Commission has filed four complaints against mergers between ce-

ment producers in the past decade, resulting in three consent decrees and one abandoned

transaction. Alternatively, additional research could be conducted on the environmental

impact of the cement industry and how market power affects the efficacy of regulation.
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Appendix Materials

A Additional Proofs

A.1 Proof of Theorem 1

We use “*” to denote realized values that result from firms bidding according to equation

(9), as per the posited equilibrium. We first consider the case where all plant marginal cost

functions are constant, following the discussion in Miller (2014).22

Lemma 1. Assume that the plant marginal cost functions are such that cj(qj) = c̄j ∀j ∈ J .
Then, if all firms each own only one plant and submit bids according to equation (9), no firm
has an incentive to unilaterally change its strategy.

Proof. First, note that no firm has an incentive to unilaterally change its strategy to any

alternative that leaves unchanged the probability of the firm’s plant winning and losing

the same auctions. From equation (5), we see that bij does not appear when determining

the price earned in an auction being won by plant j. Furthermore, each firm only owns

one plant, which means the price for a winning firm is determined by bids from other

firms. Therefore, any strategies, taking other firm bids as given, that result in identical

probabilities for a plant winning and losing the same sets of customers give the same firm

revenues. Furthermore, these strategies all result in the same costs, as expected plant

quantities remain fixed. Thus, firm profits do not increase.

What remains is to establish whether the firm has an incentive to choose a strategy that

changes which auctions the firm wins. There are two possibilities: (1) strategies that cause

the firm to lose auctions it would otherwise win in the baseline strategy, and (2) strategies

that cause the firm to win auctions it would otherwise lose in the baseline strategy.

Without loss of generality, we consider the incentives of some firm owning a plant we

label x. We know from equation (5) that if plant x is the winning choice by buyer i and

plant y is the second-best choice, the transaction price is such that

p∗ix =
1

ϕ
(uix − uiy) + b∗iy. (A.1)

Furthermore, plant x must score the highest, which means that

uix − ϕc̄x ≥ uiy − ϕb∗iy, (A.2)

22The inequality in equation (9) rules out the case where the marginal cost of the winning firm is so high
that it cannot provide positive surplus to the buyer even at a price equal to marginal cost.
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where we have substituted in for the bid function of plant x. Rearranging this score in-

equality to solve for marginal cost gives

c̄x ≤ 1

ϕ
(uix − uiy) + b∗iy, (A.3)

and combining this inequality with equation (A.1) implies that c̄x ≤ p∗ix. The price paid to

the owner of plant x covers its marginal production costs for the auctions it wins. Thus, the

owner of plant x would lower its profits if it instead raised its bids in these auctions such

that it lost them.

Consider instead a case where, under the bidding strategies of equation (9), plant x

loses an auction for buyer l to some plant z. Based on the scoring rule, we know that

ulz − ϕb∗lz ≥ ulx − ϕc̄x, (A.4)

since plant z must score better than plant x. Rearranging gives

c̄x ≥ 1

ϕ
(ulx − ulz) + b∗lz. (A.5)

Suppose that the firm that owns plant x were to lower its bid to overtake plant z as the

winner. Then, plant z would be the second-best option, determining the transaction price.

That price would become

p′lx =
1

ϕ
(ulx − ulz) + b∗lz, (A.6)

by applying equation (5). We use “p′ix” to denote the realized price under the alternative

strategy. Combining these two equations implies that c̄x ≥ p′lx, meaning the potential price

does not exceed the marginal cost of plant x. Therefore, the owner of plant x does not gain

from outbidding rival plants in order to win auctions that it otherwise would have lost.

Given that the above computations do not depend on the bids chosen by rival firms

(note that equations (A.1) to (A.6) do not specify the exact bids that other firms make), we

have found a weakly dominant strategy for firms with constant marginal costs.

Lemma 1 implies that, conditional on other firms bidding according to equation (9), for

any realized level of marginal cost, there is an optimal set of customers for a plant to serve.

This is restated in the following corollary.

Corollary 1. Assume all firms each only own one plant and submit bids according to equation
(9). Then no firm has an incentive to unilaterally switch to a strategy that gives the same plant
marginal cost but changes the probabilities for which customers the firm will win.

Proof. Again, consider some firm owning a plant we label x. From Lemma 1, if one sub-
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stitutes cx(q∗x) for c̄x in equations (A.1) to (A.6), this establishes that, for a given level of

plant marginal cost (denoted by “*”), using the proposed bidding strategy results in the

firm winning auctions with prices that exceed this marginal cost and losing auctions where

outbidding the winner would result in a price below this marginal cost.

We are now ready to tackle the case with weakly increasing marginal cost functions.

Lemma 2. Assume that all marginal cost functions adhere to Assumption 3. Then if all firms
each only own one plant and submit bids according to equation (9), no firm has an incentive
to unilaterally change its strategy.

Proof. Again, consider the incentives of some firm with a plant x. Corollary 1 rules out

switching to a different strategy that gives the same plant quantity and therefore the same

marginal cost. What remains is to consider strategies that result in a different marginal cost

from cx(q
∗
x). There are two possibilities: (1) alternative strategies where marginal costs are

greater than cx(q∗x), and (2) alternative strategies where marginal costs are less than cx(q∗x).

Given that firm marginal cost functions are non-decreasing, case (1) can occur only if a firm

bids such that plant-level quantity increases, whereas case (2) can only occur only if a firm

bids such that plant-level quantity decreases.

In order to increase total quantity, the firm that owns plant x would need to decrease its

bids for some of the auctions it would lose under marginal cost bidding while continuing to

prevail in the auctions it would win.23 Consider one of these auctions, say for some buyer l,

where plant x loses to plant z when bidding according to equation (9). Following the logic

of Lemma 1, the price that would result if plant x instead lowered its bid to overtake plant

z is given by p′lx in equation (A.6). Furthermore, by substituting cx(q∗x) for c̄x in equation

(A.5), we also find that cx(q∗x) ≥ p′lx. Given that the quantity increases under this alternative

strategy, we have that cx(q′x) ≥ cx(q
∗
x), which implies in turn that cx(q′x) ≥ p′lx. Therefore,

the price does not exceed plant costs in these additional auctions, meaning strategies that

increase quantity do not raise profits.

In order to decrease total quantity, the firm that owns plant x would need to increase

its bids for some of the auctions it would win under marginal cost bidding while continuing

to lose in the other auctions.24 Again referring to Lemma 1, equation (A.1) implies that

the price earned by plant x in an auction it wins is p∗ix. After substituting in cx(q
∗
x) for c̄x

in equation (A.3), we see that p∗ix ≥ cx(q
∗
x), which also means that p∗ix ≥ cx(q

′′
x), where q′′x

23Note that we can rule out a strategy that results in the firm losing some auctions it wins under marginal
cost bidding, as this alternative is dominated by a strategy that produces the same quantity sold and hence the
same costs but where those sales include all of customers that it would have won under marginal cost bidding.
This is due to Corollary 1.

24Analogous to the above discussion in the case of increasing quantity, we can rule out a strategy where
the firm wins some auctions it loses under marginal cost bidding, as those customers offer less lucrative price
opportunities than the customers the firm wins with marginal cost bidding.
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denotes the lower quantity that obtains when plant x wins fewer auctions. Therefore, the

price in the auctions the firm wins under marginal cost bidding also covers the marginal

cost realized in the alternative strategy. Forgoing winning these auctions would lower firm

profits.

We now extend to the case of multi-plant firms.

Lemma 3. If all firms submit bids according to equation (9), a firm that owns multiple plants
does not have an incentive to switch to a strategy of bidding more than one plant for any
customer.

Proof. From Lemma 2, we see that a strategy giving the highest profit for a plant, condi-

tional on submitting a bid for that plant, is to bid the marginal cost. This rules out an

incentive to switch to other strategies besides marginal cost bidding.

The question remains whether the firm has an incentive to bid multiple plants. Assume

instead of following equation (9), that some firm owning multiple plants deviated from the

baseline strategy and instead submitted a bid for multiple plants for one or more buyers.

Using equation (2), one can rank all the plants with submitted bids by decreasing score for

each auction. Focus on one such auction for some buyer i. Given this ranking, there are

three possible cases: (1) none of the plants owned by the firm have the highest score for

this buyer, (2) the firm owns the plant with the highest score but not the plant with second

highest, and (3) the firm owns both the plant with the highest score and the plant with the

second highest. Given the auction format, in the first and second cases, the profits of the

firm are the same under both the baseline and alternative bidding strategies, as in the first,

the firm earns zero revenue, and in the second, the price is determined by a different firm’s

bid, as shown in equation (5).

Turning to the third case, without loss of generality, label the highest scoring plant x

and the second highest scoring plant y, which are both owned by this firm. Label the

next highest scoring plant that is owned by a separate firm plant z. Under the alternative

strategy, applying equation (5), the firm earns a price of

p′ix =
1

ϕ
(uix − scoreiy) , (A.7)

whereas under the baseline strategy, the firm earns a price of

p∗ix =
1

ϕ
(uix − scoreiz) . (A.8)

Because, by assumption, scoreiy > scoreiz, the firm would earn a higher price if it chose

the baseline strategy.
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That is, a firm does not bid against itself. This is the mechanism through which mergers

can increase prices, as when plants are joined under the same owner, they cease offering

bids against each other. The proof of Theorem 1 follows from Lemmas 1 through 3.

A.2 Proof of Theorem 3

The result for market shares in equation (13) follows by computing the expected probability,

given equilibrium bids from equation (9), that a given plant j would have the highest score

for a buyer in county n. This involves integrating over the nested logit shocks in the scores

within the maximization problem,

max
k∈Ji

{ukn + ζi + (1− σ)ϵik − ϕc∗k}. (A.9)

Applying the usual nested logit market share formulas gives the result. Analogous compu-

tations for the probability of choosing the outside good give the result for s∗0n in equation

(16).
Turning to the proof for markups in equation (14), if we substitute the nested logit gross

utility from equation (12) into the margin from equation (11), we have

mij =
1

ϕ

(
ujn + ζi + (1− σ)ϵij − ϕcj(qj)− max

k∈Ji\{j}
{ukn + ζi + (1− σ)ϵik − ϕck(qk)}

)
. (A.10)

This margin assumes that plant j is the winner for buyer i.

Taking expectations of this equation involves calculating the value of the expected max-

imum of all bidders (conditional on plant j being the highest ranked) and the value of

the expected maximum of all bidders, excluding the bid from the firm that owns plant j.

Applying the nested logit inclusive value formulas gives

m∗
jn =

1

ϕ
∑

k∈J f(j) s∗kn
ln

 1 +
(∑

k∈J exp
(
ukn−ϕc∗k

1−σ

))1−σ

1 +
(∑

k∈J\J f(j) exp
(
ukn−ϕc∗k

1−σ

))1−σ

 (A.11)

for the expected margin of serving a buyer in county n, conditional on plant j winning the

auction. Rearranging this expression gives equation (14). Solving for price in the definition

of the margin, mij = pij − cj , and taking expectations across logit shocks similar to the

derivation in equation (A.11) gives equation (15).

Buyer surplus is calculated by finding the expected dollar value of utility in the maxi-

mization problem (A.9), substituting in for the outside good share using equation (16), and

then subtracting off the additional increment over marginal costs that is paid to firms. This

results in equation (17).
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B Incorporating Nash Bargaining

We introduce an alternative model that incorporates ex post Nash bargaining between the

buyer and the supplier that wins the second score auction. We first derive expressions for

markups and prices under the assumption that suppliers submit bids at cost, and discuss

why it is difficult to separately identify the bargaining parameter and the price parameter

without data on marginal cost. We then establish that suppliers submitting bids at cost is an

equilibrium. Finally, we derive the change in the bargaining parameter that would exactly

eliminate the rise in markups that we estimate.

B.1 Model

Consider an alternative model that incorporates ex post Nash bargaining. Buyers continue

to score suppliers according to the rule in equation (2), and they continue to choose the

plant with the best score as the winner. Therefore, the share equation (13) remains the

same. However, in order to determine the price, the buyer and winning firm engage in

Nash bargaining rather than using equation (5). We label the outcomes in this alternative

model “B” for “bargaining” to distinguish them from those in the auction framework.

Suppose plant j is the best-scoring option for buyer i. The bargaining game between

buyer i and plant j sets price according to

max
pBij

{(
πBij − πB

NT

ij

)1−λ (
uBij − uB

NT

ij

)λ}
, (B.1)

such that

πBij − πB
NT

ij ≥ 0 and uBij − uB
NT

ij ≥ 0, (B.2)

where 0 ≤ λ ≤ 1 is a bargaining parameter that measures the relative bargaining power of

buyers to firms. The objects with “NT ” superscripts denote the outside options for the firm

and buyer if the negotiation does not go through. The πBij and πB
NT

ij are the profits that

plant j earns if it trades with buyer i versus if it does not trade, respectively. Analogously,

the uBij and uB
NT

ij are the payoffs to buyer i if it trades with plant j versus if it does not. A

firm and a buyer will only transact if neither receives negative gains from trade.

For buyers, we assume the disagreement payments are

uB
NT

ij = max
k∈Ji\{j}

{
uik − ϕbBik

}
, (B.3)

meaning that if the buyer fails to trade with plant j, the disagreement payoff is the buyer’s

payoff from the second best scoring plant among those that bid. For the firm, we assume
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that the disagreement payoff is zero. Together, after substituting in for firm profit and buyer

utility, these assumptions imply that the bargaining problem becomes

max
pBij

{(
pBij − cj(q

B
j )
)1−λ

(
uij − ϕpBij − max

k∈Ji\{j}

{
uik − ϕbBik

})λ
}
, (B.4)

subject to

pBij − cj(q
B
j ) ≥ 0 and uij − ϕpBij − max

k∈Ji\{j}

{
uik − ϕbBik

}
≥ 0, (B.5)

which are the firm and buyer participation constraints, respectively.

If λ = 0, then the model collapses to our baseline. In that case, the firm has all the

bargaining power and asks for as high a price as possible. The constraint for buyer partic-

ipation binds, meaning the price is such that uij − ϕpBij = maxk∈Ji\{j}{uik − ϕbBk }, which

is the same as the condition in equation (4). If λ = 1, then the buyer has all the bargain-

ing power and wants to pay as low a price as possible. In this case, the firm participation

constraint binds, meaning the price is given by pBij = cj(q
B
j ).

When 0 < λ < 1, differentiating with respect to price after taking natural logs yields the

first order condition of the bargaining problem,

1

ϕ

1− λ

λ
=

pBij − cj(q
B
j )

uij − ϕpBij −maxk∈Ji\{j}{uik − ϕbBik}
, (B.6)

which implies that 1/ϕ times the ratio of firm to buyer bargaining power equals the ratio

of firm to buyer gains from trade. This calculation treats all marginal costs and other firms’

bids as fixed. Rearranging this expression gives

mB
ij ≡ pBij − cj(q

B
j ) =

1− λ

ϕ

(
uij − ϕcj(q

B
j )− max

k∈Ji\{j}
{uik − ϕbBik}

)
. (B.7)

In the next subsection, we show that bidding at marginal cost remains an equilibrium

of the bargaining model. If we impose that bik = ck for all k ∈ Ji \ {j}, then equation (B.7)

is identical to equation (11), except the right-hand side is multiplied by 1 − λ. Solving for

price gives

pBij =
1

ϕ

(
uij − max

k∈Ji\{j}

{
uik − ϕbBik

})
︸ ︷︷ ︸

pij from second-score auction

− λ

ϕ

(
uij − ϕcj(q

B
j )− max

k∈Ji\{j}

{
uik − ϕbBik

})
︸ ︷︷ ︸
λ-fraction of incremental surplus provided by i-j trade

. (B.8)

The first half of the right hand side is the same result for price in the second-score auction

model from equation (5). The second half subtracts off a fraction λ of the surplus provided

by plant j to buyer i, which is the portion of gains from trade that the buyer is able to retain
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under bargaining.
Applying the nested logit inclusive value formulas we arrive at an expression for ex-

pected markups similar to equation (14),

mB∗
jn = −1− λ

ϕ

1∑
k∈J f(j) sB∗

kn

log

1− (1− sB∗
0n

)1−

1−
∑

k∈J f(j)

sB∗
kn

1− sB∗
0n

1−σ

 . (B.9)

The bargaining version of the model only adds the parameter λ as a multiplier to the

markup equation. An implication is that it may be difficult to separately identify the bar-

gaining power and the price parameter in practice. As discussed in Appendix D, the param-

eters of marginal cost and ϕ are not separately identified by the market share equations in

(13), meaning that the markup relationship is needed to isolate ϕ. Therefore, absent addi-

tional information about markups or costs, we have only the markup equation to identify

both λ and ϕ, and separating the two is not possible. If the true model features ex post
Nash bargaining, then our results for the baseline model can be interpreted as providing an

estimate of ϕ relative to 1− λ.

B.2 Equilibrium

The marginal cost bidding strategy in equation (9) is also an equilibrium of this alternative

model with bargaining. Note that the first part of Lemma 1 continues to hold, because the

price, conditional on a plant winning, does not depend on that plant’s bid, per equation

(B.8).

With constant marginal cost functions, again consider a case where, for buyer i, plant

x is the highest ranked bidder and plant y is the second highest when bids equal marginal

cost. The markup earned by plant x is then

mB∗
ix =

1− λ

ϕ

(
uix − ϕcx −

(
uiy − ϕbB∗

iy

))
. (B.10)

The scoring inequality remains as in (A.2), meaning uix − ϕcx − (uiy − ϕbB∗
iy ) ≥ 0. As

(1− λ)/ϕ is positive, this inequality implies that the margin is non-negative. Therefore, the

price covers marginal costs for the auctions won.

For the auctions where a firm would lose, again consider the case where, for buyer l,

plant z is the winner and plant x is ranked worse under marginal cost bidding. If the owner

of plant x were instead to decrease its bid to beat plant z, it would earn a margin given by

mB′
lx =

1− λ

ϕ

(
ulx − ϕcx −

(
ulz − ϕbB∗

lz

))
. (B.11)
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However, we know from the initial scoring inequality that ulz − ϕbB∗
lz ≥ ulx − ϕcx, which

means this additional margin from outbidding plant z is not positive and hence does not

increase the profits for plant x. Therefore, Lemma 1 continues to hold. By the same token,

Corollary 1 also continues to hold, as equations (B.10) and (B.11) imply that, for a given

level of marginal cost, the equilibrium strategy causes each plant to win those auctions

where prices cover this marginal cost, and lose those auctions where prices do not.

As for Lemma 2, which deals with increasing marginal cost, consider the case where

plant x is contemplating an alternative strategy with a higher marginal cost than occurs in

the baseline equilibrium, meaning cx(qB
′

x ) > c(qB∗). Given that quantity must increase to

give higher costs, the owner of plant x would need to change its bids to win some auctions

that it lost under the baseline strategy. However, we know from Corollary 1 that the price

that would be earned in those auctions already gives a negative margin for a cost of c(qB∗),

by applying equation (B.11). Therefore, the margin would also be negative for a higher

marginal cost, c(qB
′
). If we instead consider the case where plant x is contemplating an

alternative strategy with a lower marginal cost than occurs in the baseline equilibrium,

meaning cx(qB
′′

x ) < c(qB∗), this situation would involve the plant losing some auctions it

would have otherwise won. According to Corollary 1, through an application of equation

(B.10), we know that the margin for these auctions plant x would have won are positive for

a cost of c(qB∗), meaning they would also be positive for a lower marginal cost like cx(qB
′′

x ).

As a result, the firm that owns plant x would lower its profits if it were to change its bids to

lose these auctions. Thus, Lemma 2 continues to hold.

Finally, Lemma 3 for multi-plant firms continues to apply. As can be seen from equation

(B.7), a firm owning multiple plants has no incentive to bid any plants other than its best

scoring one, as bidding additional either lowers the margin (if the firm owns both the first

and second most-preferred plants) or results in no change to the margin (in all other cases).

Therefore, Lemmas 1 to 3 continue to hold, meaning marginal cost bidding according to

equation (9) is also an equilibrium of the model with bargaining.

B.3 Offsetting Changes in Bargaining Power

Our results from our baseline auction model imply that the quantity-weighted median

markup increased by 5.3% over the period we study. We can calculate the offsetting change

in bargaining power that would be needed for markups in 2019 to be equal to those in 1974,

under an alternative assumption that markups are determined according to the model of

ex post bargaining. That the offsetting change is identified is evident from equation (B.7),

where the markups decrease as firms’ bargaining power, 1− λ, falls, all else equal.
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Our baseline result is
m2019

m1974
=
f(s2019;ϕ, σ)

f(s1974;ϕ, σ)
= 1.053, (B.12)

where the markups for each year are functions f(·) of the market shares and model pa-

rameters, as given in equation (14). Under ex post bargaining, the markups would have an

additional term from the bargaining power parameters,

m2019

m1974
=

1− λ2019

1− λ1974
f(s2019;ϕ, σ)

f(s1974;ϕ, σ)
, (B.13)

as can be seen from equation (B.9). Therefore, the offsetting change in firms’ bargaining

power that keeps markups the same (m2019 = m1974) can be obtained as follows, exploiting

that changes in the bargaining parameter do not affect market shares:

1 =
1− λ2019

1− λ1974
× 1.053 ⇒ 1− λ2019

1− λ1974
= 0.95. (B.14)

Therefore, our model indicates that firms’ bargaining power would have to fall by 5% in

order to generate markups in 2019 that equal those in 1974.

C Incorporating Vertical Integration

Past research in Syverson and Hortaçsu (2007) has documented the presence of vertical in-

tegration between cement producers and ready-mix concrete producers. In this Appendix,

we demonstrate how one can incorporate vertical integration into our framework. We show

that under certain assumptions the parameters of the baseline model (without vertical inte-

gration) can absorb the economic effects of vertical integration under a change-of-variables:

the baseline marginal costs would represent the marginal costs of cement production plus

any transaction costs related to vertical interaction.

We modify the baseline models as follows. In the vertical structure, concrete firms are

downstream and cement firms are upstream. The concrete firms, in effect, act like distrib-

utors for cement (in its final form, concrete), where production and distribution can be

vertically integrated. Let there be a number of symmetric concrete firms, each with a fixed

marginal cost c̃ for transforming cement into concrete. Furthermore, cement firms incur a

transaction cost of ψ when dealing with a concrete plant. This cost can be impacted by ver-

tical integration; for example, an increase in vertical integration might reduce transaction

costs, which can be captured by a smaller ψ. Assume that there is perfect competition be-

tween concrete firms in the provision of their services. This assumption seems reasonable,

as Syverson and Hortaçsu (2007) show that, according to their geographic market delin-
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eations, there tend to be a large number of competitors in concrete. The authors report that

concrete markets on average contain about 12 firms. Prices to final customers (construction

firms) are set according to the second-score auction presented in our baseline model.

Given perfect competition between concrete firms, the fee they charge to cement plants

is equal to the downstream marginal cost. Thus, the relevant marginal cost of cement plant

j in the modified model is

ĉj(qj) = cj(qj) + c̃+ ψ (C.1)

where cj(qj) is as defined in the baseline model. We assume that all sellers—including

the outside good—must flow through an intermediary (a concrete plant or equivalent). If

Assumption 3 holds for cj(qj) then it also holds for ĉj(qj). Furthermore, Theorems 1, 2, and

3 extend trivially, replacing cj(qj) in most instances with ĉj(qj).25 Then, equilibrium choice

probabilities and cement firm markups do not change, and the price to final customers is

p̂ij = mij + cj(qj) + c̃+ ψ (C.2)

where the cement markup term, mij , is as defined in the baseline model. Of this price, the

concrete plant receives c̃ and the cement plant receives pij = mij + cj(qj) + ψ.26

Suppose that this modified model is the data-generating process, and that we estimate

the baseline model nonetheless. We select the marginal cost function to rationalize the

prices pij that accrue to the cement plant, taking into account the markup mij . There-

fore, we would overstate the pure cement marginal cost by ψ; given our specification, this

additional cost would be absorbed by the constant. Restated, the marginal costs that we

estimate would represent the marginal cost of cement production plus the transaction cost.

Similarly, linear changes in ψ over time would be absorbed by the time trend.

This model could be further modified to allow for concrete firms to earn a positive

markup m̃, such as the fixed markup that results from some models of monopolistic com-

petition. In this case, the marginal cost that a cement plant would bid at would include this

markup, giving ĉj(qj) = cj(qj) + c̃+ m̃+ ψ. The important assumption is that the behavior

of downstream firms does not cause upstream concrete firms to alter their bidding behavior

in a way that causes a strategic interaction between upstream and downstream markups.

The estimation of the baseline model can accommodate changes in vertical integration (in

ψ) that manifest as a shift upwards (or downwards) in bids and/or a linear trend over time.

25When doing the calculations for Theorem 3, we treat the outside good as having a marginal cost of c̃+ ψ.
The buyer surplus in equation (17) also needs to be modified to subtract off these additional costs.

26The average price in equation (15) is the price received by cement plants, meaning the modified model
adds ψ alongside c∗j to the markup.
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D Data and Estimation

D.1 Fuel Costs

We measure the fuel costs of each kiln based on fossil fuel prices and the kiln’s energy

requirements, following Miller et al. (2017). The calculation is

Kiln Fuel Costjt = Primary Fuel Pricejt × Energy Requirementsjt

where the primary fuel price is in dollars per mBtu and the energy requirements are in

mBtu per metric tonne of clinker. We use the state-level average prices of coal, natural

gas, and distillate fuel oil paid by the industrial sector, which we obtain from the State

Energy Database System (SEDS). In the Plant Information Summary, some kilns list multiple

primary fuels. As the mix of primary fuels is unknown, we treat such kilns as follows: We

calculate fuel costs with the price of coal if coal is among the primary fuels. If not, we use

natural gas prices if natural gas is among the multiple fuels. We use oil prices only if oil is

the only fossil fuel listed. Throughout our analysis, we treat petroleum coke as coal.

We calculate the energy requirements of each kiln technology based on the U.S. and
Canadian Portland Cement Labor-Energy Input Survey. There is no discernible change in

the energy requirements of production, conditional on the kiln type, over 1990-2010. We

calculate the average mBtu per metric tonne of clinker required in 1990, 2000, and 2010,

separately for each kiln type, and apply these averages over 1990-2019. These require-

ments are 3.94, 4.11, 5.28, and 6.07 mBtu per metric tonne of clinker for precalciner kilns,

preheater kilns, long dry kilns, and wet kilns, respectively. A survey of the USGS accords

with our calculations (Van Oss (2005)). Technological improvements within kiln type are

evident over 1974-1990. The labor-energy surveys indicate that in 1974 the energy require-

ments were 6.50 mBtu per metric tonne of clinker at dry kilns (a blended average across

dry kiln types), and 7.93 mBtu per metric tonne of clinker at wet kilns. We assume that

technological improvements are realized linearly over 1974-1990 and scale the energy re-

quirements accordingly. We scale down our calculated energy requirements by five percent

to reflect that a small amount of gypsum is ground together with the kiln output.

Figure G.15 plots the fraction of industry capacity that uses each fossil fuel as its primary

energy source (top panel). Early in the sample, natural gas, coal, and fuel oil are primary

fuels. Coal is the only primary fuel in the middle years. Some kilns switch back to natural

gas late in the sample. The figure also shows the prices of these fuels (bottom panel).

Comparing across panels, the usage of the coal and natural gas tracks relative prices.
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D.2 Customs Districts

We assume that buyers can purchase imported cement from customs districts. In the data,

we observe the volume of cement that flows through every customs district in each year.

These volumes reflect nearby domestic supply and demand conditions, as captured in the

model. They also reflect forces outside the model, including foreign supply conditions and

the capacity of the customs district to process imports (e.g., many customs districts include

ports, so the maritime infrastructure matters). We observe that some customs districts

process a small or negligible amount of cement early in the sample and become a significant

source of cement imports only later in the sample.

To accommodate this pattern, we designate selected ports as “active” and assume buyers

can purchase cement from any active customs district. For our baseline specification, we

assume an active customs district meets the following criteria: (1) it is one of the largest

20 customs districts as measured by the maximum volume of cement imported in any year

during the sample period, and (2) the port has reached 30% of its maximum volume of

imports. These specific thresholds do not appear to be consequential, and our main results

are robust to alternatives (Appendix E and columns (ix) and (x) of Table G.1). The model

predictions match well the volume of imports over time (Figure G.6). At the district-year

level, the bivariate correlation statistic between the model predictions and the data is 0.62.

We provide a scatter plot in Figure G.16.

The top 20 customs districts, in descending order of the maximum quantity of imported

cement received in a year, are: New Orleans LA, Tampa FL, Los Angeles CA, Houston TX,

San Francisco CA, Detroit MI, Miami FL, Seattle WA, New York City NY, Charleston SC,

Columbia-Snake/Portland OR, Nogales AZ, Cleveland OH, Buffalo NY, Norfolk VA, Mobile

AL, Ogdensburg NY, Providence RI, San Diego CA, and El Paso TX.27 The customs districts

outside the top 20, listed in descending order of the maximum quantity of imported cement

received in a year, are: Philadelphia PA, Milwaukee WI, Savannah GA, St. Albans VT, Bal-

timore MD, Wilmington NC, Boston MA, Duluth MN, Pembina ND, Chicago IL, Great Falls

MT, Laredo TX, Minneapolis MN, Portland ME, and Bridgeport CT. Throughout the sample,

these fifteen small customs districts account for about ten percent of imports.

D.3 Market Size

We model the market size of each county with data on an exogenous demand factor (e.g., as

in Berry et al., 1995; Nevo, 2001). We use the number of construction employees, a measure

of construction activity highly predictive of cement consumption. Data are available at the

27Import quantities fall precipitously in Duluth MN and Milwaukee WI after 2005, and in Nogales AZ after
2009; we code those port as inactive accordingly.
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county level throughout our sample period. First, to convert “units of employment” to

“units of consumption,” we regress cement consumption on construction employment and

a time trend interacted with construction employment. We aggregate the data to the state

level because we do not observe county-level consumption data. We let the coefficients be

state-specific. The regression equation is:

Consumptionrt = β1rEmploymentrt + β2rEmploymentrt × Trendt + ϵrt (D.1)

where r indexes states and t indexes years. Second, we use the relationship implied by

the regression coefficients to obtain predicted values for each county. Third, we double

the predicted values to obtain the county market sizes we use in estimation. This last

step ensures that the market size exceeds consumption in every region-year observation. A

similar approach is used in Miller and Osborne (2014b).

We assume cement prices do not affect construction employment, motivated by the

empirical fact that cement accounts for a small fraction of total construction expenditures

(Syverson, 2004). We also assume construction activity (with employment as a proxy)

affects demand only through market size. Restated, it does not enter gross utility (equation

(1)) and market shares (equation (6)). As a result, changes in market size rotate demand,

proportionally increasing or decreasing the number of buyers that exist throughout the

gross utility distribution. Market size affects price if it shifts firms along increasing regions

of their marginal cost functions, thereby inducing changes in equilibrium bids.

We summarize the regression results in Figure G.17. The top panel is a scatter plot

of the data and predicted values. Construction employment is highly predictive of cement

consumption; the R2 of the regression is 0.9862. This is consistent with inelastic market-

level demand or, equivalently, a sizeable nesting parameter. At the same time, little residual

variation remains to pin down the nesting parameter. Together, these observations help

motivate the σ = 0.90 assumption we impose in estimation. The bottom panels provide his-

tograms for the estimated β1r and β2r coefficients, respectively. Construction employment

has a positive relationship with cement consumption in every state (bottom left), and the

relationship attenuates somewhat over time in most states (bottom right).

D.4 Identification

We now describe informally how the empirical variation that we exploit pins down different

parameters. To do so transparently, we consider an alternative parameterization of the

model in which demand is logit (σ = 0), marginal cost is constant in output, and the gross

utility and marginal cost functions are ujnt(Xt,θ) = xjntβ and cjt = wjtα, respectively,

where xjnt is an M dimensional vector of demand covariates and wjt is an L-vector of cost
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shifters. There are M +L+1 parameters to be identified: the demand parameters in β, the

price parameter ϕ, and the cost parameters in α.

We start under the baseline assumption that the econometrician observes market shares

and average prices at the plant-county level, and return to the implications of having more

aggregate data later. The equations for shares and average prices are:

sjnt =
exp(xjntβ − ϕwjtα)

1 +
∑

k exp(xkntβ − ϕwktα)
(D.2)

and

pjnt = wjtα+
1

ϕ

1

sjnt
log

(
1

1− sjnt

)
. (D.3)

Consider first the cost and price parameters. It is possible to solve equation (D.3) for

both α and ϕ under mild conditions because both market shares and average prices are

data. To see why, stack the prices into a vector p and let the matrix W combine the cost

shifters and the markup terms, such that the row corresponding to plant j, county n, and

period t is given by [
wjnt,

1

sjnt
log

(
1

1− sjnt

)]
.

With this notation in place, we can write

p = W

[
α,

1

ϕ

]
.

A sufficient condition for a unique solution is that W has full column rank and there are at

leastM+1 equations. The intuition is identical to the identification necessary for regression

coefficients.

For the demand parameters, once α and ϕ have been recovered, they can be plugged

into equation (D.2), and this allows a solution for β to be obtained under mild conditions.

In particular, note that the usual share inversion holds:

log(sjnt)− log(s0nt) = xjntβ − ϕwjtα, (D.4)

where s0nt is the share of the outside good. Let y be a vector with the element correspond-

ing to plant j, county n, and period t being given by[
log(sjnt)− log(s0nt) + ϕ̂wjtα

]
,

and let X be a matrix with the same row given by xjnt. Identification is obtained if Y = Xβ

can be solved for β. A sufficient condition is that there are at least L equations and that X
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has full column rank, with intuition again identical to the case of regression.

These identification arguments reveal an important property of the second-score auction

model: estimation based on the market share inversion of equation (D.4) alone does not

separate the price parameter from the cost parameters, as these enter only through their

multiplicative products. Furthermore, each demand parameter is identified only to the

extent that the corresponding demand shifter is not also a cost shifter. Thus, price variation

is necessary to separately identify all of the parameters of the model.

In cases for which estimation is based on aggregated equilibrium outcomes, as in our

application, global identification typically must be assumed. Miller and Osborne (2014a)

provide a discussion that covers identification and the conditions under which asymptotic

consistency and normality are obtained in that context. Among the outcomes we use in this

application, all but the price outcomes can be calculated from equilibrium market shares.

These cannot disentangle the cost parameters from the price parameter, and they cannot

separately identify the demand and cost coefficients for any variable that enters demand

and cost (which in our case is the time trend and the constant). Still, they do pin down the

demand parameters that characterize the disutility of distance, and they also help deter-

mine the multiplicative products of the cost parameters and the price parameter. The price

outcomes we use are necessary then to separately identify all of the parameters.

D.5 Fixed Effects

Building upon the identification discussion above, we now explain why it can be difficult to

separately estimate cost and demand fixed effects in the second-score auction framework;

our discussion extends to any variable that enters both gross utility and marginal cost. This

has implications for the additional specifications we can present for robustness purposes in

Appendix E. For concreteness, consider a modified version of our model. Let the indirect

gross utility that buyer i in county n and period t receives from plant j be

uijnt = xjntβ + ξdr(n) + ϵijnt (D.5)

where ξdr(n) is demand-side fixed effect for region, r, in which county n is located. Let the

marginal cost of plant j be

cjt = wjtα+ ξcr(n) (D.6)

where ξcr(n) is a cost-side fixed effect. Finally, let ζr(n) ≡ ξdr(n) − ϕξcr(n) be the difference

between the demand-side and cost-side fixed effects (in equivalent units) and, for mathe-

matical tractability, let σ = 0, so the model collapses to a flat logit.

Applying these modifications to (13)-(15) obtains the following expressions for equilib-
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rium market shares and prices:

s∗jnt =
exp (xjntβ − ϕwjtα)

exp
(
−ζr(n)

)
+
∑

k∈J exp (xkntβ − ϕwktα)
(D.7)

p∗jnt = wjtα+ ξcr(n) −
1

ϕ

1∑
l∈J f(j) s∗lnt

log

 ∑
l∈J f(j)

s∗lnt

 (D.8)

By inspection, share-based and quantity-based moments that build on equation (D.7) can

identify the net of the demand and cost fixed effects (i.e., ζ), but they cannot separately

identify the two. Furthermore, they identify the net only if they involve substitution be-

tween the inside and outside goods, as the relative shares of any two inside goods are

unaffected by the fixed effects:

s∗jnt
s∗knt

=
exp (xjntβ − ϕwjtα)

exp (xkntβ − ϕwktα)
(D.9)

Among the moments we use, only those that exploit variation in regional production and

consumption build on equation (D.7) in a way that could inform the net of demand-side

and cost-side fixed effects.

The ability to separately identify demand-side and cost-side fixed effects in practice then

rests on the price-based moments that build on equation (D.8). In that equation, the cost-

side fixed effect has a direct effect, and the net of the fixed effects has an indirect effect

through market share. In practice, the variation we incorporate with our price moments

does not allow us to disentangle the cost and demand-side fixed effects, as they ultimately

have similar impacts on equilibrium prices.

D.6 Computational Burden

The main computational challenge is that equilibrium must be computed for every candi-

date parameter vector. In most years of our sample there are more than 300,000 prices

and shares at the plant-county level. We exploit the properties of the second-score auction

model to make computation tractable. The key insight is that equilibrium can be character-

ized by plant-level shares (equation (10)). In our estimation sample, the maximum number

of plants in a given year is 179. Thus, by formulating equilibrium in terms of a plant-level

strategies, the length of the vector being targeted by our nonlinear equation solver is re-

duced by more then two orders of magnitude relative to what would be required for an

analogous Bertrand model of price competition.28 To implement, we use the large-scale

28Two of us applied a brute-force approach to estimate a Bertrand/logit model of the cement industry (Miller
and Osborne, 2014b). We focused exclusively on Arizona, California, and Nevada in order make the problem

APP–17



nonlinear equation solver of La Cruz et al. (2006) and parallelize by assigning each of the

46 years in the estimation sample to a different processor.

A second challenge is that equilibrium outcomes are nonlinear in the demand and cost

parameters; we cannot “concentrate out” some parameters from the objective function (e.g.,

as in Berry et al., 1995; Nevo, 2001). This limits the number of parameters. Our baseline

specification features twelve estimated parameters, and estimation can take multiple days,

depending on the starting values. Our robustness specifications typically feature more pa-

rameters and require longer convergence times. With region fixed effects, there are an ad-

ditional seven estimated parameters, and the total estimation time can be multiple weeks.

We benefit from the empirical setting because it is possible to capture the salient industry

features with a sparsely parameterized model.

D.7 Asymptotic Consistency

Our estimates are consistent under the identifying assumption, E[ωmt|Xt] = 0, where ωmt

is prediction error for endogenous outcome m in year t and Xt is data. The primary threat

to consistency is misspecification due to unobserved plant characteristics.29 If one region

has higher prices and greater output because its plants provide higher unobserved quality,

then this could lead us to understate the price sensitivity of buyers. Alternatively, if plants

in one region have higher marginal costs than plants in other regions due to unobservables,

then the region may exhibit relatively higher prices and lower output, and this could lead

us to overstate price sensitivity.

However, we believe that the model accounts for the bulk of the heterogeneity. On the

demand side, the cement itself is produced in accordance with ASTM standards. Some

plants may have a reputation for good customer service, or for being reliable, but we have

not seen evidence that such factors are of first-order importance. Considerations that are

specific to a plant-buyer pair (e.g., relationships) are subsumed by the preference shocks

and thus unproblematic, conditional on the distributional assumption. On the supply side,

we use data on the technologies, capacities, and fuel costs of the kilns in our sample to in-

corporate heterogeneity. Corroborating our interpretation is that we find elasticities within

the range reported in the literature, and our transportation cost estimates align with those

reported by the USGS (Section 4.2).

Our approach involves modeling the relevant demand-side and supply-side factors and

selecting parameters under which the model best predicts the prices and quantities in the

data. As both prices and quantities are dependent variables, our approach is conceptually

manageable. The typical year featured around 1,000 prices and market shares at the plant-county level.
29Strictly interpreted, price endogeneity bias does not arise in our application because price data are not used

to construct the right-hand-side of equation (20).
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distinct from the alternative of seeking to isolate exogenous variation in prices (e.g., with

an instrument) and then selecting parameters based on the relationship between quantities

and the exogenous portion of prices. Empirical correlations between price and quantity are

not problematic in our framework, so long as what generates the correlations is modeled.

For example, an increase in construction activity could increase price, as plants move up

their cost curve and gain market power, but this would not bias our results because the

model embeds capacity constraints and flexible, location-specific markups.

D.8 Details on Implementation

We estimate the model using Nelder-Mead. We then apply Levenberg-Marquardt to confirm

that convergence occurs at a local minimum. The estimates are stable in the sense that

when we re-estimate using starting values perturbed from their estimated values, we obtain

the same results. In the initial application of the Nelder-Mead algorithm, we constrain

some parameters to ensure that the equilibria we compute are economically sensible; these

constraints include ϕ > 0, α1 > 0, ν ∈ [0, 1], and γ > 0. These constraints restrict the price

parameter, fuel cost parameter, utilization threshold, and capacity cost, respectively. When

applying the Levenberg-Marquardt algorithm, we do not apply the constraints.

For the moment weights, we calculate the variance among each of the six types of en-

dogenous outcomes enumerated in Section 4.1, and weight all the moments of the same

type by the corresponding inverse variance. Additionally, we reduce the weight on the con-

sumption and production moments by 50%; they are highly correlated and together they

account for 75% of the endogenous outcomes used in estimation. Absent this downweight-

ing, the estimator drifts into areas of the parameter space for which we could not solve the

fixed point problem.

E Robustness Analyses

Table G.1 summarizes the results of eight robustness analyses. Across the columns of the

table, the specifications that we use are as follows:

(i) We interact Overland Miles with the gasoline price. We obtain the gasoline price from

the same SEDS database that we use for fossil fuel prices. There is panel variation at

the state-year level, and we assign a price based on the state of the cement plant.

(ii) We include fixed effects for each of the eight BEA regions: New England, Mideast,

Great Lakes, Plains, Southeast, Southwest, Rocky Mountain, and Far West. We imple-

ment this by putting the fixed effects in the marginal cost specification, so the constant
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in the marginal cost function is absorbed. It is difficult to separately identify cost and

demand fixed effects in practice, as discussed in Appendix D.5.

(iii) We include fixed effects for five-year windows of time: 1980-1984, 1985-1989, 1990-

1994, and so on. The first period has six years (1974-1979). We again place these

fixed effects in the marginal cost function.

(iv) We incorporate kiln age and the price of electricity into the marginal cost function.

We obtain the price of electricity from the SEDS database; there is panel variation at

the state-year level.

(v) We treat customs districts as active once they hit 20% of their maximum observed

volume, rather than 30%. See Appendix D.2.

(vi) We use the top 25 customs districts, rather than the top 20. See Appendix D.2.

(vii) We use a nesting parameter of 0.85.

(viii) We use a nesting parameter of 0.95.

We set the utilization parameter at the baseline estimate of 0.289 in columns (ii)-(iv), rather

than estimate it, because the parameter can be difficult to identify separately. The changes

in the nesting parameter used in columns (vii)-(viii), relative to the baseline of 0.90, repre-

sent meaningful changes because demand derivatives scale multiplicatively with the ratio

ϕ/(1− σ), for price parameter ϕ and nesting parameter σ.

In the bottom rows, Table G.1 shows the implied changes in the quantity-weighted me-

dian HHI and markup from 1974 to 2019. Across columns, the changes in the HHI range

from 512 to 1086, and the changes in the markup range of $0.65 to $1.43. Thus, the re-

sults are consistent with those that we obtain with the baseline specification—they point to

significant increases in concentration and modest increases in markups.

Looking at specific parameters, we find that the demand parameters are quite stable

across columns, but some of the supply-side parameters shift. Relative to the baseline spec-

ification, the price parameter is somewhat larger with region fixed effects, and somewhat

smaller with time fixed effects. This leads to median plant-level elasticities of -6.92 and

-2.04, respectively, relative to the baseline elasticity of -3.10. With region fixed effects, we

also find that the Fuel Cost parameter is substantially higher (and less economically reason-

able) than the baseline result, and we obtain a negative trend in marginal costs. With time

fixed effects, the Fuel Cost parameter is smaller than the baseline result. Therefore, some

of our results can be sensitive to the variation that is used in estimation. Finally, we note

that the signs of the estimated electricity price and kiln age parameters are negative, which

runs counter to our expectations. Still, our main results are unaffected.
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F Two-Sided Bounds on Operational Fixed Costs

This appendix details our approach to estimating two-sided bounds for operational fixed

costs, which follows Eizenberg (2014). Adapting the Eizenberg notation to our setting, let

the operational fixed cost associated with operating kiln r be given by

Frt = F d + νrt,

where F d takes one value for wet and long dry kilns and another value for modern preheater

and precalciner kilns (we use the d to distinguish technologies), and ν is a mean-zero

stochastic term with bounded support. We suppress time subscripts hereafter.

Let firms simultaneously determine which kilns to operate each year, with payoffs then

being determined by the second-score auction model of Section 3. We assume that observed

outcomes satisfy the equilibrium condition that no firm can improve its profit by idling a

kiln observed to be active, or by operating a kiln observed to be idle, taking as given the

status of all other kilns. In support, we observe that idling often occurs when demand

conditions are unfavorable. For instance, in the average year we observe that 2% of kilns

idle, but in 2010—just after the Great Recession—19 of 155 kilns (12%) idle.30

Because fixed costs have bounded support, the following bounds obtain:

Lr(X,θ) ≤ Fr ≤ Ur(X,θ). (F.1)

These are trivially satisfied for any small enough Lr(·) and big enough Ur(·). The central

methodological contribution of Eizenberg (2014) is in using data to inform how tight the

bounds can be made. The first step is to obtain the incremental gain to variable profit that

a firm obtains (or would obtain) by operating a kiln. For kiln r owned by firm f(r), we

denote the incremental gain as

∆r(X,θ) ≡ π∗f(r)(X,θ|r operates)− π∗f(r)(X,θ|r idles),

where we hold fixed the status of other kilns. For any kiln that operates, the first term on the

right-hand side is obtained from the observed equilibrium, and the second term is obtained

with a counterfactual simulation. This reverses for any kiln that is idle. Thus, to recover

∆r(X,θ), we simulate one counterfactual equilibrium for each kiln-year in the data.

30The identifying assumption would be violated if some kilns are idled due to unanticipated breakdowns, and
indeed we understand that breakdowns can occur. Such a violation of the identifying assumption may end up
being benign for the bounds that we construct, however. The reason is that idled kilns are used to construct the
lower bound of operational fixed cost, and the main ingredient to the lower bound is the minimum profit that
any idled kiln would have earned had it operated (as we show mathematically below). That minimum is most
likely to come from a kiln that satisfies the assumption that it is idled due to unfavorable conditions.
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One-sided bounds are possible to compute without additional assumptions.31 To inform

the two-sided bounds of equation (F.1), Eizenberg assumes that the variation in incremental

gain across observations is likely to exceed the variation in fixed costs, and describes why

assumption is reasonable in many settings. We adopt that assumption here. Letting A0
d and

A1
d be the sets of kilns that idle and operate, respectively, and separately by kiln technology,

the bounds then can be expressed:

Lr(X,θ) =

{
minm∈A0

d
∆m(X,θ) r ∈ A1

d

∆r(X,θ) r ∈ A0
d

(F.2)

and

Ur(X,θ) =

{
∆r(X,θ) r ∈ A1

d

maxm∈A1
d
∆m(X,θ) r ∈ A0

d.
(F.3)

The final step is to average across these bounds to gain knowledge of the F d terms.

Taking unconditional expectations obtains

E[Lr(X,θ)] ≤ F d ≤ E[Ur(X,θ)],

which defines the identified set for F d. The estimated set is
[
l
d
(X, θ̂), ud(X, θ̂)

]
, where the

elements are sample averages:

l
d
(X, θ̂) =

1

Nd

Nd∑
m=1

Lm(X, θ̂) and ud(X, θ̂) =
1

Nd

Nd∑
m=1

Um(X, θ̂),

with Nd being the number of kilns of type d. Because far more kilns operate than idle, the

lower bound is mostly determined by the min function (equation (F.2)), whereas the upper

bound is not much affect by the max function (equation (F.3)).

Following Eizenberg and Imbens and Manski (2004), we report a (1− α)× 100% confi-

dence interval for F d by constructing one-sided intervals for the sample averages:[
l
d
(X, θ̂)− Sl(X, θ̂)√

Nd
z1−α , u

d(X, θ̂) +
Su(X, θ̂)√

Nd
z1−α

]
, (F.4)

where Sl(X, θ̂) and Su(X, θ̂) are standard deviations of Lr and Ur. Our confidence inter-

vals do not account for statistical uncertainty from the auction model estimation.

We implement using 10,011 kiln-year observations. Of these, we observe 242 in which

a kiln is idled in a given year—194 involving old technology kilns and 48 involving modern

31For any kiln that operates, Fr ≤ ∆r(·). For any kiln that is idle, Fr ≥ ∆r(·).
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kilns. Our counterfactual simulations indicate that ∆r equals zero for 550 observations

(5.5%), and we exclude those from our subsequent calculations. One limitation of our

analysis is that, among the 48 instances in which a modern kiln idles, 47 involve preheater

kilns that do not have the supplementary combustion chamber of a precalciner kiln. Thus,

our bounds estimates may reflect the operational fixed cost of preheater kilns more than

the broader set of modern preheater and precalciner kilns.
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G Additional Figures and Tables
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Figure G.1: Additional Kiln-Level and Plant-Level Statistics, 1974-2019

Notes: The figure shows the number of kilns (top panel), the average number of kilns per plant (middle panel),
and the average plant capacity in millions of metric tonnes (bottom panel) over the sample period. We designate
kilns as using “Old Technology” if the kiln is a wet kiln or a long dry kiln, and as using “Modern Technology” if
the kiln uses a precalciner or a preheater. Data are from the Plant Information Summary of the Portland Cement
Association.
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Figure G.2: Plant-Level Marginal Cost per Metric Tonne (Illustrative Example)

Notes: The figure plots the marginal cost function of the Flintkote plant (Kosmodale, Kentucky) in 1974, taking
as given our parameter estimates. The plant has two kilns. It initially uses the more efficient kiln to produce
marginal output (region A), then it uses the less efficient kiln (region B), and finally it splits marginal output
between the kilns (region C). The vertical axis is in dollars per metric tonne and the horizontal axis is in
thousands of metric tonnes.
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Figure G.3: Marginal Cost and Marginal Cost Components

Notes: The figure plots the average plant-level marginal cost over the sample period, as well as a decomposition
that separates marginal cost into a constant portion and a portion that is due to capacity constraints. Variation
in the constant portion of marginal cost is predominately due to changes in fossil fuel prices (e.g., Figure G.15)
and changes in kiln technology that improve fuel efficiency. Variation in the portion due to capacity constraints
is predominately attributable to macroeconomic demand-side fluctuations that affect the utilization rates of
domestic kilns.
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Figure G.4: Model Fits for Consumption, Production, and Prices

Notes: The panels show the time series fits of the model to total consumption, total production, and average
prices among the states of the contiguous US.
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Figure G.5: Model Fit for Observed Cross-Region Shipments

Notes: The dots represent the fraction of shipments from Northern California, Southern California, or California
that go to the same regions, Arizona, and Nevada. The horizontal location of each dot provides the value in the
data and the vertical location provides the value in the model. Section 2.3 describes the California Letter data
in greater detail.
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Figure G.6: Additional Model Fits

Notes: The first three panels show the model fit to region-year specific consumption, production, and average
prices. The other panels show time-series fits for the proportion of production by plants with a wet kiln, the
proportion of shipments that use a river barge, and the quantity of imports. A 45-degree line is provided in
all scatter plots. In the panel for production, the dots for which the model predictions are well below the data
correspond to Colorado, Wyoming, and Kansas. The model may understate the ability of plants in those states
to reach distant buyers using rail transportation.
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Figure G.7: Changes in the Lerner Index

Notes: The figure plots the the quantity-weighted median county-level markup Lerner index ((p− c)/c).
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Figure G.8: Illustration of Spatial Differentiation and Price Discrimination

Notes: The top panels show county-specific average price per metric tonne charged by an Armstrong plant in
Western Pennsylvania (left) and an Ash Grove Plant in Oregon (right). The horizontal axes show the miles
between the county and the plant. The bottom panels display the market shares for the same plants in every
county. Prices and market shares are obtained from the model for the year 2019. Comparing the two plants,
note that the scales of the vertical axes are quite different. Whereas both plants obtain higher prices and greater
market shares from nearby counties, these patterns are more pronounced for the Ash Grove plant, which is more
isolated from competitors.
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Figure G.9: Barge Shipment Sources and Destinations

Notes: The county-level shading depicts the proportion of cement consumption in 2019 for which barge trans-
portation is utilized. Plants are identified as high barge shipment plants if more than 15 percent of their cement
is shipped using a barge. All statistics are based on the modeling results for 2019. The counties and plants that
use barge transportation heavily are near the Mississippi River System, but differ in where along the river they
are located.
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Figure G.10: County-Level HHIs in 1974 and 2019, and the Change from 1974 to 2019
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Figure G.11: County-Level Markups in 1974 and 2019, and the Change from 1974 to 2019
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Figure G.12: County-Level Prices in 1974 and 2019, and the Change from 1974 to 2019
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Figure G.13: Short Run Determinants of Welfare Changes

Notes: The figure provides waterfall graphs for the quantity-weighted mean buyer surplus (top panel), variable
profit (middle panel), and welfare (bottom panel). The units are in dollars per metric tonne. The welfare
statistics are obtained by holding demand-side factors at their 2019 values, and iteratively allowing supply-side
factors to change from their 1974 values to their 2019 values.
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Figure G.14: Robustness Analysis for the Scale Elasticities

Notes: The figures show the quantity-weighted median ratio of average cost to marginal cost for alternate fixed
cost values. The top panels evaluate the average cost and marginal cost functions at equilibrium quantities with
a 50% reduction in fixed costs (left, E = 116.4) and a 50% increase in fixed costs (right, E = 349.1), relative
to our baseline analysis. The bottom panels evaluate the functions at the average output of a plant in 1974,
which we obtain from the model. Medians are shown for all plants, plants with old technology, and plants with
modern technology.
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Figure G.15: Primary Fuels, Fossil Fuel Prices, and Fuel Costs

Notes: The top panel plots the fraction of kiln capacity that burns as its primary fuel (i) coal or petroleum
coke, (ii) natural gas, and (iii) fuel oil. Data are from Plant Information Summary. The middle panel plots the
average national prices paid for these fuels by the industrial sector in real 2010 dollars per mBtu. The bottom
panel provides the capacity-weighted average fuel cost per metric tonne.
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Figure G.16: Model Fit for Import Volumes

Notes: The dots represent the volume of imported cement that enters each active customs district each year. The
horizontal location provides the value in the data and the vertical location provides the model prediction. Units
are in thousands of metric tonnes. The four dots on the lower right of the scatter plot represent New Orleans,
including data from two years after Hurricane Katrina. The model may understate the demand associated with
rebuilding and the extent to which imports into New Orleans can access the Mississippi River System.
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Figure G.17: Regressions of Cement Consumption on Construction Employment

Notes: We regress cement consumption on construction employment and construction employment interacted
with a time trend to help construct market size. The units of observation are at the state-year level. We allow
the coefficients to be state-specific. The top panel plots the predicted values (vertical axis) against the (data).
Construction employment is highly predictive of cement consumption; the dots are along the 45-degree line.
The bottom left and bottom right panels are histograms of the estimated state-specific employment coefficients
and estimated interaction coefficients, respectively. Construction employment is positively correlated with
cement consumption in every state, and the relationship attenuates somewhat over time in most states.
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Table G.1: Results with Alternative Specifications

Specification (i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

Gross Buyer Utility

Constant 0.456 0.737 0.219 0.474 0.546 0.411 0.530 0.309
(0.044) (0.047) (0.033) (0.048) (0.045) (0.040) (0.055) (0.030)

Overland Miles -1.389 -1.924 -2.266 -2.139 -2.161 -3.516 -1.070
(0.056) (0.066) (0.094) (0.082) (0.080) (0.140) (0.043)

Overland Miles -1.083
× Gasoline Price (0.044)

River Barge Used -0.445 -0.377 -0.414 -0.448 -0.439 -0.441 -0.673 -0.223
(0.007) (0.004) (0.005) (0.007) (0.006) (0.006) (0.010) (0.003)

Time Trend 0.001 -0.001 0.001 -0.002 -0.002 -0.001 -0.001 -0.001
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Imported Cement 0.078 0.347 0.069 0.116 0.088 0.089 0.101 0.060
(0.016) (0.021) (0.014) (0.019) (0.017) (0.015) (0.024) (0.010)

Imported Cement 0.005 0.006 0.000 0.005 0.005 0.005 0.005 0.004
× Time Trend (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.000)

Marginal Cost

Constant 34.40 44.199 26.347 31.231 26.81 35.47
(2.34) (2.188) (2.671) (2.152) (2.93) (1.95)

Fuel Cost 1.58 4.280 0.522 1.839 1.891 1.719 1.71 1.79
(0.05) (0.145) (0.052) (0.047) (0.052) (0.046) (0.05) (0.05)

Kiln Age -0.315
(0.046)

Electricity Price -0.355
(0.031)

Time Trend -0.006 -0.831 0.121 -0.002 -0.002 -0.001 -0.001 -0.001
(0.029) (0.067) (0.134) (0.001) (0.001) (0.001) (0.001) (0.001)

Capacity Cost 36.73 169.77 25.39 45.69 45.29 52.12 24.18 88.29
(8.81) (8.88) (1.61) (2.63) (8.60) (10.70) (5.97) (16.95)

Utilization Threshold 0.260 0.289 0.289 0.289 0.170 0.354 0.110 0.426
(0.107) — — — (0.092) (0.073) (0.152) (0.052)

Fixed Effects none region time none none none none none

Other Parameters

Price Parameter 0.006 0.010 0.004 0.006 0.006 0.005 0.007 0.004
(0.000) (0.0004) (0.0002) (0.0004) (0.0004) (0.0003) (0.000) (0.000)

Nesting Parameter 0.90 0.90 0.90 0.90 0.90 0.90 0.85 0.95
— — — — — — — —

Transportation Costs
Overland Cost 0.20 0.14 0.50 0.38 0.36 0.41 0.51 0.29
Barge Cost 79.98 38.18 107.14 74.35 70.90 83.84 96.65 61.32

Bid Elasticity of Demand
Plant-Level Demand -3.20 -6.92 -2.04 -3.52 -3.70 -3.00 -2.49 -4.50
Demand for Cement -0.10 -0.20 -0.06 -0.11 -0.23 -0.20 -0.11 -0.07

Change 1974-2019
Median County HHI 1022 1086 888 818 512 821 777 805
Median Markup 1.13 0.65 1.43 0.91 0.92 1.08 1.08 0.90

Notes: Column (i) allows motor gasoline prices to affect the disutility of overland miles. Columns (ii) and (iii) add
region and time fixed effects to the marginal cost specification, respectively. The time fixed effects identify 5-year
windows. Column (iv) adds kiln age and the electricity price to marginal cost. Column (v) treats customs districts
as active once they hit 20% of their maximum volume, rather than 30%, and Column (vi) uses the top 25 customs
districts, rather than the top 20. Columns (vii) and (viii) use nesting parameters of 0.85 and 0.95, respectively. Fuel
Cost, Kiln Age, Electricity Price, and Time Trend are demeaned. Overland Cost is in dollars per tonne-mile, and Barge
Cost is in dollars per tonne. We use quantity-weighted median county HHIs and markups. Standard errors are shown
in parentheses; we use “—” to indicate a parameter that is not estimated.
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